paddle.fluid模块如何实现网络构建,请代码示例
时间: 2024-05-03 22:20:55 浏览: 163
基于paddle搭建神经网络实现5种水果识别分类python源码+数据集(高分毕设).zip
5星 · 资源好评率100%
以下是一个简单的神经网络构建的代码示例:
```python
import paddle
import paddle.fluid as fluid
# 定义输入数据形状
image_shape = [3, 28, 28]
# 定义输入数据和标签的占位符
image = fluid.data(name='image', shape=image_shape, dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
# 定义卷积神经网络
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=image,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act='relu'
)
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act='relu'
)
predict = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
# 定义损失函数和优化器
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
# 定义一个执行器
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 训练和测试模型
for epoch in range(10):
for batch_id, data in enumerate(train_reader()):
image_data, label_data = data
loss, = exe.run(fluid.default_main_program(),
feed={'image': image_data, 'label': label_data},
fetch_list=[avg_cost])
print("Epoch %d, cost = %f" % (epoch, loss[0]))
```
阅读全文