jw_list = [complex(0, 1) * 2 * pi / N * item for item in np.linspace(-N/2, N/2, N, endpoint=False)]这段代码如果使用C语言进行编写,jw_list设置为一维数组,但是不使用复数运算,结果需要一样,可以解决吗

时间: 2024-03-29 21:36:59 浏览: 20
可以使用 C 语言来编写类似的代码,但是需要使用两个一维数组来分别存储实部和虚部。具体的实现方法如下: ```c #include <math.h> #define N 1024 double pi = acos(-1.0); // 定义 pi 常量 double jw_real[N]; // 存储实部的数组 double jw_imag[N]; // 存储虚部的数组 int main() { for (int i = 0; i < N; i++) { double item = -N / 2.0 + i; // 计算 item 值 jw_real[i] = 0; // 初始化实部为 0 jw_imag[i] = 2 * pi / N * item; // 计算虚部 } return 0; } ``` 在 C 语言中,没有复数类型,因此需要用两个数组分别存储实部和虚部。本例中,使用了一个 for 循环来遍历数组元素,并计算 jw_imag 数组的值。需要注意的是,在 C 语言中,pi 常量并不是内置的,需要手动计算得到。 如果您需要在 C 语言中进行复数运算,可以使用 C99 标准库中的 `<complex.h>` 头文件。使用该头文件,可以定义一个 `double complex` 类型的变量来存储复数,然后使用对应的函数进行计算。具体的代码实现方法可以参考我的另外一篇回答: [如何在 C 语言中实现复数运算?](https://www.zhihu.com/question/29580032/answer/196407986)

相关推荐

import numpy as np import matplotlib.pyplot as plt # 光纤参数 core_radius = 5e-6 # 光纤芯径 cladding_radius = 125e-6 # 包层芯径 n_core = 1.45 # 光纤芯的折射率 n_cladding = 1.44 # 包层的折射率 alpha = 0.2 # 损耗系数 # 模式参数 m = 1 # 模式数 l = 0 # 角动量数 k = 2 * np.pi / 1.55e-6 # 波矢量 # 离散化 dr = 1e-7 # 径向离散化步长 dz = 1e-5 # 纵向离散化步长 r_max = 2 * core_radius # 最大径向范围 z_max = 1e-3 # 最大纵向范围 nr = int(r_max / dr) + 1 # 径向离散化数 nz = int(z_max / dz) + 1 # 纵向离散化数 # 初始化 r = np.linspace(0, r_max, nr) z = np.linspace(0, z_max, nz) E = np.zeros((nr, nz), dtype=complex) # 边界条件 E[:, 0] = np.exp(1j * k * r) # 入射光线 E[:, -1] = 0 # 输出面边界条件 # 模式初值 w = np.sqrt(2 / np.pi) * np.exp(-r ** 2 / core_radius ** 2) w *= np.sqrt((2 * l + 1) / (2 * np.pi * m * core_radius ** 2)) w /= np.sqrt(np.sum(np.abs(w) ** 2) * dr) E[:, 1] = w # 数值求解 for i in range(1, nz - 1): # 径向二阶导数 d2Edr2 = (E[2:, i] - 2 * E[1:-1, i] + E[:-2, i]) / dr ** 2 # 纵向一阶导数 dEdz = (E[:, i + 1] - E[:, i]) / dz # 光学传输方程 E[1:-1, i + 1] = E[1:-1, i] + dz * ( (1j * k * n_core) ** 2 * E[1:-1, i] - (1 / core_radius ** 2 + alpha / 2) * E[1:-1, i] - ( n_core ** 2 - n_cladding ** 2) * d2Edr2 / k ** 2 - 2 * 1j * k * dEdz / (m * core_radius ** 2)) # 绘图 plt.imshow(np.abs(E) ** 2, extent=(0, z_max, r_max, 0), aspect='auto') plt.xlabel('z / m') plt.ylabel('r / m') plt.colorbar() plt.show()

详细解释以下Python代码:import numpy as np import adi import matplotlib.pyplot as plt sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # Config Tx sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # Config Rx sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # Create transmit waveform (QPSK, 16 samples per symbol) num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # Start the transmitter sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # Clear buffer just to be safe for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # Stop transmitting sdr.tx_destroy_buffer() # Calculate power spectral density (frequency domain version of signal) psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # Plot time domain plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # Plot freq domain plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show(),并分析该代码中QPSK信号的功率谱密度图的特点

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

基于Java的ApplicationPower快速项目生成脚手架设计源码

ApplicationPower项目生成脚手架设计源码:该项目基于Java开发,包含284个文件,主要使用Java和Shell语言。ApplicationPower是一个快速的项目生成脚手架,旨在帮助开发者快速搭建项目框架,包括创建项目结构、配置文件、开发环境等,提高开发效率。
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。