编写利用Resnet50去噪的python代码
时间: 2023-06-06 08:05:35 浏览: 105
好的,这个问题可以回答,以下是基于ResNet50的Python代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.applications.resnet50 import ResNet50
# 加载 ResNet50 模型并去掉顶部分类层和最后一层激活函数
resnet50 = ResNet50(weights='imagenet', include_top=False,
input_shape=(224, 224, 3), pooling=None)
resnet50.layers.pop()
resnet50.layers.pop()
# 创建去噪卷积神经网络
model = tf.keras.Sequential([
layers.Input(shape=(224, 224, 3)),
layers.Lambda(lambda image: tf.image.resize(image, (224, 224))),
layers.GaussianNoise(0.1),
resnet50,
layers.Conv2DTranspose(filters=256, kernel_size=3, strides=2, padding='same', activation='relu'),
layers.Conv2DTranspose(filters=128, kernel_size=3, strides=2, padding='same', activation='relu'),
layers.Conv2DTranspose(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
layers.Conv2D(3, kernel_size=(3, 3), strides=(1, 1), padding='same'),
])
# 编译模型
model.compile(optimizer='adam', loss=tf.keras.losses.MeanSquaredError())
# 训练模型
history = model.fit(train_images, train_labels,
validation_data=(validation_images, validation_labels),
epochs=10, verbose=2)
```
当然,以上代码仅仅是个示例,具体的实现还要根据你的具体需求而定。
阅读全文