resnet50原结构代码
时间: 2024-12-24 16:14:14 浏览: 15
ResNet50是一种深度残差网络(Residual Network),它是由微软亚洲研究院提出的一种用于图像识别的卷积神经网络模型。其核心思想是在深度网络中引入跨层连接(residual connections),解决了训练深层网络时的梯度消失问题。
原始的ResNet50代码通常不会直接在这里给出,因为这涉及到大量的代码实现细节和依赖库(如TensorFlow、PyTorch等)。但是,我可以给你提供一个大概的概念:
```python
# 使用PyTorch为例
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(residual) # 这里就是残差连接
out = self.relu(out)
return out
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 256, blocks=3, stride=1)
self.layer2 = self._make_layer(256, 512, blocks=4, stride=2)
self.layer3 = self._make_layer(512, 1024, blocks=6, stride=2)
self.layer4 = self._make_layer(1024, 2048, blocks=3, stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(2048, num_classes)
def _make_layer(self, in_channels, out_channels, blocks, stride):
layers = []
layers.append(ResidualBlock(in_channels, out_channels, stride))
for _ in range(1, blocks):
layers.append(ResidualBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 使用示例:
model = ResNet50()
```
如果你想详细了解ResNet50的源代码实现,可以查阅相关的开源项目库,比如torchvision或Hugging Face的Transformers库。同时,
阅读全文