在pytorch平台上使用完整python代码使用googlenet,resnet这两个经典的神经网络实现手写数字识别并给出运行结果及图像,关键是在GPU上运行出图像
时间: 2023-06-10 17:02:56 浏览: 93
好的,我明白了。为了使用GoogleNet和ResNet实现手写数字识别,我们需要引入PyTorch库和一些其他必要的库。下面是完整的Python代码:
```python
import torch
import torch.nn as nn
import torchvision
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.googlenet = torchvision.models.googlenet(num_classes=10)
self.resnet = torchvision.models.resnet18(num_classes=10)
def forward(self, x):
x1 = self.googlenet(x)
x2 = self.resnet(x)
return x1, x2
# 加载MNIST手写数字数据集
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))
])
train_set = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
# 初始化网络和优化器
net = Net()
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
# 训练网络
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs1, outputs2 = net(inputs)
loss1 = criterion(outputs1, labels)
loss2 = criterion(outputs2, labels)
loss = loss1 + loss2
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
# 使用测试集对网络进行测试并展示识别结果
test_set = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=8, shuffle=False)
for data in test_loader:
images, labels = data
images, labels = images.cuda(), labels.cuda()
outputs1, outputs2 = net(images)
_, predicted1 = torch.max(outputs1.data, 1)
_, predicted2 = torch.max(outputs2.data, 1)
for i in range(8):
image = images[i].cpu().numpy()
image = image.transpose(1, 2, 0)
image = image * 0.3081 + 0.1307
label = labels[i].cpu().numpy()
pred_label1 = predicted1[i].cpu().numpy()
pred_label2 = predicted2[i].cpu().numpy()
print('Ground truth label: %d, Predicted label (GoogleNet): %d, Predicted label (ResNet): %d' % (label, pred_label1, pred_label2))
plt.imshow(image)
plt.show()
```
这段代码定义了一个名为Net的类,其中包含一个GoogleNet和一个ResNet模型,这对于手写数字识别应该足够了。然后我们使用PyTorch内置的MNIST数据集加载手写数字图像,并将其提供给一个数据加载器。之后我们训练了这个网络,然后使用测试集对其进行测试,并将每个数字的原标签、GoogleNet预测的标签和ResNet预测的标签打印出来,并将每个数字的图像展示出来。
阅读全文