python输入一组10个整数,存放在列表numbers中,计算这组数的和、平均值、方差。方差是各个数据分别与其平均数之差的平方的和的平均数。 要求:用两种方法对构建好的列表进行遍历。1、直接遍历列表元素,形式如for item in ls: 2、遍历列表元素的索引,形式如for i in range(len(ls)):
时间: 2024-03-24 14:41:36 浏览: 197
可以使用以下代码实现:
```python
# 输入10个整数
numbers = []
for i in range(10):
num = int(input("请输入第%d个整数:" % (i+1)))
numbers.append(num)
# 计算和
total = sum(numbers)
# 计算平均值
mean = total / len(numbers)
# 计算方差
variance = sum([(x-mean)**2 for x in numbers]) / len(numbers)
# 遍历列表元素
for num in numbers:
print(num)
# 遍历列表元素的索引
for i in range(len(numbers)):
print("numbers[%d] = %d" % (i, numbers[i]))
# 输出结果
print("这组数的和为:", total)
print("这组数的平均值为:", mean)
print("这组数的方差为:", variance)
```
注意,方差的计算使用了列表推导式和sum函数,可以简化代码。同时,注意遍历列表元素的两种方法的不同之处。
相关问题
输入一组10个整数,存放在列表numbers中,计算 这组数的和、平均值和方差,并输出。python
可以使用以下代码实现:
```python
import math
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 计算和
sum_nums = sum(numbers)
# 计算平均值
mean = sum_nums / len(numbers)
# 计算方差
variance = sum((x - mean)**2 for x in numbers) / len(numbers)
print("和为:", sum_nums)
print("平均值为:", mean)
print("方差为:", variance)
```
输出:
```
和为: 55
平均值为: 5.5
方差为: 8.25
```
输入一组 10 个整数,存放在列表 numbers 中,计算这组数的和、平均值、方差。 方差:一组数据中各个数据与平均数的差的平方的和的平均数。
好的,可以使用 Python 编程语言来实现这个问题。以下是代码实现:
```python
import math
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 计算和
total = sum(numbers)
# 计算平均值
average = total / len(numbers)
# 计算方差
variance = sum([((x - average) ** 2) for x in numbers]) / len(numbers)
print("和为:", total)
print("平均值为:", average)
print("方差为:", variance)
```
以上代码中,我们先定义了一个包含 10 个整数的列表 numbers,然后使用内置函数 sum() 计算列表中所有元素的和,再通过除以列表长度得到平均值。最后,我们通过计算每个元素与平均数的差的平方值,并将它们相加,得到方差的值。最后,我们输出和、平均值和方差的值。
阅读全文
相关推荐
















