model.save('model/mask.h5')保存模型model = tensorflow.keras.models.load_model('model/mask.h5', compile=False)加载模型依然报错UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe3 in position 30: invalid continuation byte怎么解决

时间: 2024-01-30 13:04:19 浏览: 22
这个错误可能是因为保存模型时使用了错误的编码格式。您可以尝试在保存模型时指定编码格式为'latin1',代码如下: ``` model.save('model/mask.h5', save_format='h5', encoding='latin1') ``` 然后在加载模型时使用相同的编码格式,代码如下: ``` model = tensorflow.keras.models.load_model('model/mask.h5', compile=False, encoding='latin1') ``` 如果仍然遇到问题,您可以尝试使用pickle来保存和加载模型,它支持更多的数据类型。代码如下: ``` import pickle # 保存模型 with open('model/mask.pkl', 'wb') as f: pickle.dump(model, f) # 加载模型 with open('model/mask.pkl', 'rb') as f: model = pickle.load(f) ``` 希望这可以帮助您解决问题。
相关问题

import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%

上面这段代码是在导入一些库。它导入了 OS 库,Random 库,NumPy 库,CV2 库,Keras 库,以及一个叫做 Create_unet 的自定义模块。它还定义了两个字符串变量:img_path 和 mask_path,分别存储了图像数据和掩码数据的路径。

用python和opencv基于人脸检测+戴口罩分类识别方法,实现一个人脸佩戴口罩检测系统,最后通过OpenCV库运行一个无限循环程序,使用电脑的摄像头验证系统功能。其中人脸检测使用opencv的haarcascade_frontalface_default.xml,戴口罩分类识别模型用mask和without_mask两个数据集(mask数据集的图片格式为'序号-with-mask.jpg',without_mask数据集'序号-jpg')训练CNN模型,并给出包括模型训练在内的,完整的代码和算法思路解说。

算法思路解说: 1. 通过OpenCV库中的CascadeClassifier类加载已经训练好的haarcascade_frontalface_default.xml,进行人脸检测。 2. 将检测到的人脸区域进行裁剪,输入到CNN模型中进行分类,判断是否佩戴口罩。 3. 训练CNN模型时,先将mask和without_mask两个数据集按照一定比例划分为训练集和测试集,然后使用ImageDataGenerator类进行数据增强,包括旋转、翻转、缩放等操作,增加模型的鲁棒性。 4. 模型架构采用卷积层、池化层、全连接层等结构,最后使用softmax函数进行分类。 5. 对于测试集结果进行评估,计算准确率、召回率等指标,选择模型表现最好的参数进行模型保存。 6. 在实际应用中,通过OpenCV库中的VideoCapture类获取电脑摄像头的实时视频流,对每一帧进行人脸检测和口罩分类,将结果输出到视频流中。 代码实现: 1. 导入相关库 ```python import cv2 import numpy as np from keras.models import load_model ``` 2. 加载已经训练好的人脸检测模型和口罩分类模型 ```python face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') model = load_model('mask_detection.h5') ``` 3. 定义函数进行口罩分类 ```python def mask_detection(image): # 缩放图像大小为100x100 image = cv2.resize(image, (100, 100)) # 对图像进行预处理,归一化像素值 image = np.array(image) / 255.0 # 添加一个维度,变为4D张量 image = np.expand_dims(image, axis=0) # 预测分类结果,返回概率 prediction = model.predict(image)[0] # 根据概率值确定分类结果 if prediction[0] > prediction[1]: return 'mask' else: return 'without_mask' ``` 4. 打开摄像头,进行检测和分类,并输出结果到视频流中 ```python # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取一帧图像 ret, frame = cap.read() # 将图像转为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 遍历每一个人脸区域 for (x, y, w, h) in faces: # 裁剪人脸区域 face = frame[y:y+h, x:x+w] # 进行口罩分类 mask_type = mask_detection(face) # 绘制人脸区域和分类结果 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(frame, mask_type, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # 显示处理后的图像 cv2.imshow('Mask Detection', frame) # 按下q键退出程序 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头资源 cap.release() # 关闭窗口 cv2.destroyAllWindows() ``` 5. 训练口罩分类模型,代码如下: ```python import os import cv2 import numpy as np from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from keras.preprocessing.image import ImageDataGenerator # 定义数据集路径 train_dir = 'dataset/train/' test_dir = 'dataset/test/' # 定义图像大小和批次大小 image_size = 100 batch_size = 16 # 定义训练集和验证集的图像生成器 train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = ImageDataGenerator(rescale=1./255) # 生成训练集和验证集 train_generator = train_datagen.flow_from_directory( train_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode='categorical' ) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(image_size, image_size), batch_size=batch_size, class_mode='categorical' ) # 定义模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size, image_size, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(2, activation='softmax')) # 编译模型 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit_generator( train_generator, epochs=50, validation_data=test_generator ) # 保存模型 model.save('mask_detection.h5') ```

相关推荐

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

主要介绍了解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题,具有很好的参考价值,希望对大家有所帮助。一起跟随想过来看看吧
recommend-type

使用Keras 实现查看model weights .h5 文件的内容

主要介绍了使用Keras 实现查看model weights .h5 文件的内容,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

主要介绍了在keras中model.fit_generator()和model.fit()的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

keras的load_model实现加载含有参数的自定义模型

主要介绍了keras的load_model实现加载含有参数的自定义模型,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Keras load_model 导入错误的解决方式

主要介绍了Keras load_model 导入错误的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。