蚁群算法航迹规划问题的代码
时间: 2023-09-17 14:06:37 浏览: 89
蚁群算法是一种基于模拟蚂蚁觅食行为的一种优化算法,适用于许多问题的求解,包括航迹规划问题。下面是一个简单的航迹规划问题的蚁群算法代码:
```python
import numpy as np
class Ant:
def __init__(self, start, goal, alpha, beta, pheromone, distance):
self.start = start
self.goal = goal
self.alpha = alpha
self.beta = beta
self.pheromone = pheromone
self.distance = distance
self.path = [start]
def add_node(self, node):
self.path.append(node)
def update_pheromone(self):
path_distance = self.path_distance()
for i in range(len(self.path)-1):
node1 = self.path[i]
node2 = self.path[i+1]
self.pheromone[node1][node2] += 1 / path_distance
self.pheromone[node2][node1] += 1 / path_distance
def path_distance(self):
distance = 0
for i in range(len(self.path)-1):
distance += self.distance[self.path[i]][self.path[i+1]]
return distance
class ACO:
def __init__(self, start, goal, nodes, distance, ant_count, alpha, beta, rho, q):
self.start = start
self.goal = goal
self.nodes = nodes
self.distance = distance
self.ant_count = ant_count
self.alpha = alpha
self.beta = beta
self.rho = rho
self.q = q
self.pheromone = np.ones(distance.shape) / len(nodes)
self.ants = [Ant(start, goal, alpha, beta, self.pheromone, distance) for i in range(ant_count)]
self.best_path = None
self.best_distance = float("inf")
def run(self, iterations):
for i in range(iterations):
for ant in self.ants:
while ant.path[-1] != self.goal:
ant.add_node(self.next_node(ant))
distance = ant.path_distance()
if distance < self.best_distance:
self.best_distance = distance
self.best_path = ant.path
ant.update_pheromone()
ant.path = [self.start]
self.pheromone *= self.rho
for i in range(len(self.nodes)):
for j in range(len(self.nodes)):
for ant in self.ants:
if j in ant.path and i in ant.path:
self.pheromone[i][j] += self.q / ant.path_distance()
def next_node(self, ant):
current_node = ant.path[-1]
unvisited_nodes = [i for i in range(len(self.nodes)) if i not in ant.path]
probabilities = [((self.pheromone[current_node][i] ** self.alpha) * ((1/self.distance[current_node][i]) ** self.beta)) for i in unvisited_nodes]
probabilities = probabilities / np.sum(probabilities)
next_node = np.random.choice(unvisited_nodes, p=probabilities)
return next_node
```
这里的输入参数包括起点、终点、航点列表、航点之间的距离矩阵、蚂蚁数量、alpha、beta、信息素挥发系数rho和信息素增量q。ACO类的run方法是算法的主要部分,包括每只蚂蚁的路径搜索、信息素更新和信息素挥发等操作。其中,next_node方法用于选择下一个航点,根据信息素和距离计算航点的选择概率。最终,ACO算法将得到一条最优路径,即从起点到终点的最短航迹。
阅读全文