在pyspark上,可以调用pyspark.sparkcontext,pyspark.sparkconf,pyspark.mllib模块,最终目的实现SVM对于新闻的分类。现有数据包,为一个两级目录树的文件夹,子目录为新闻的分类,目录树结点为新闻正文的中文文本。现在要对数据进行处理,从hdfs上加载文件,对新闻分类和新闻正文转化成rdd对象,要求对于正文的处理使用tf-idf进行数据的清洗,停用词处理等。处理完数据集,输出部分内容显示中间结果。后续调用mllib库,进行SVM模型训练,并进行预测给出评估

时间: 2023-12-15 11:05:36 浏览: 97
好的,这是一个比较复杂的任务。让我们一步步来完成它。 首先,我们需要从HDFS上加载文件。在pyspark中,我们可以使用`SparkContext`对象的`textFile()`方法来加载文本文件。假设你已经在Spark集群中创建了一个`SparkContext`对象,你可以使用以下代码将文件加载到RDD中: ```python data_rdd = sc.textFile("hdfs://path/to/directory") ``` 这将把文件夹中的所有文件读入RDD中。现在,我们需要将每个文档的类别和内容分离,并将其转换为一个`(类别, 内容)`对的RDD。假设你的数据集的目录结构如下: ``` root/ ├── category_1/ │ ├── doc_1.txt │ ├── doc_2.txt │ └── ... ├── category_2/ │ ├── doc_1.txt │ ├── doc_2.txt │ └── ... └── ... ``` 你可以使用以下代码来分离类别和内容: ```python import os def get_category_and_content(path): category = os.path.basename(os.path.dirname(path)) with open(path, 'r', encoding='utf-8') as f: content = f.read() return (category, content) data_rdd = data_rdd.map(get_category_and_content) ``` 现在,我们已经得到了一个`(类别, 内容)`对的RDD。接下来,我们需要对内容进行清洗,包括去除停用词和使用tf-idf进行特征提取。对于中文文本,你可以使用`jieba`库进行分词和去停用词。你还可以使用`pyspark.ml.feature`模块中的`HashingTF`和`IDF`类来进行tf-idf特征提取。 ```python import jieba from pyspark.ml.feature import HashingTF, IDF, StopWordsRemover # 停用词列表 stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8')] # 分词函数 def seg(text): return [word for word in jieba.cut(text) if word not in stopwords] # 将内容转换为词袋向量 hashingTF = HashingTF(inputCol="text_seg", outputCol="rawFeatures", numFeatures=10000) data_rdd = data_rdd.map(lambda x: (x[0], seg(x[1]))) df = spark.createDataFrame(data_rdd, ["category", "text_seg"]) featurizedData = hashingTF.transform(df) # 计算tf-idf idf = IDF(inputCol="rawFeatures", outputCol="features") idfModel = idf.fit(featurizedData) rescaledData = idfModel.transform(featurizedData) ``` 现在,我们已经得到了一个包含tf-idf特征向量的DataFrame。接下来,我们可以使用`pyspark.mllib`模块中的`SVMWithSGD`类来训练SVM模型,并使用训练好的模型进行预测和评估。 ```python from pyspark.mllib.classification import SVMWithSGD, SVMModel from pyspark.mllib.regression import LabeledPoint # 将DataFrame转换为LabeledPoint类型 label_rdd = featurizedData.select("category").rdd.zipWithIndex().map(lambda x: (x[1], x[0][0])) data_rdd = rescaledData.select("features").rdd.zipWithIndex().map(lambda x: (x[1], x[0][0])) labeled_data = label_rdd.join(data_rdd).map(lambda x: LabeledPoint(x[1][0], x[1][1])) # 将数据划分为训练集和测试集 (trainingData, testData) = labeled_data.randomSplit([0.7, 0.3]) # 训练SVM模型 model = SVMWithSGD.train(trainingData) # 在测试集上进行预测 predictions = model.predict(testData.map(lambda x: x.features)) # 评估模型性能 labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) testErr = labelsAndPredictions.filter(lambda lp: lp[0] != lp[1]).count() / float(testData.count()) print("Test Error = " + str(testErr)) ``` 这样,我们就完成了整个任务。你可以根据需要对代码进行修改和优化。
阅读全文

相关推荐

zip

最新推荐

recommend-type

基于HOG特征与SVM算法的图像分类 .docx

综上所述,基于HOG特征和SVM算法的图像分类方法在路面裂缝检测中展示了高效和准确的性能,是计算机视觉技术在实际问题中应用的一个成功案例。通过不断优化和扩展,这种技术有望在未来的基础设施监控和安全评估中发挥...
recommend-type

SVM方法步骤.doc

支持向量机(Support Vector Machine,简称SVM)是一种监督学习模型,广泛应用于分类和回归分析。本篇文章将深入解析SVM的操作步骤,适合初学者理解和支持向量机的整个训练和测试流程。 1. **准备工作** SVM的...
recommend-type

模式识别(模型选择,SVM,分类器)作业解答+代码.docx

《模式识别:模型选择、SVM与分类器集成详解》 ...Adaboost、SVM和分类器集成是模式识别的重要工具,它们各自有其独特优势和应用场景,理解并熟练运用这些工具,有助于我们在实际问题中实现高效的分类和预测。
recommend-type

机器学习分类算法实验报告.docx

本文是关于机器学习分类算法的实验报告,涵盖了KNN、SVM、Adaboost和决策树等算法在处理数据集时的表现。实验的目标是通过对比分析来深入理解这些经典算法的原理和实现过程。 首先,实验选择了至少四种算法,包括...
recommend-type

基于变分模态分解和SVM的滚动轴承故障诊断_王新.pdf

在本研究中,SVM被用来对VMD提取的IMF分量中的能量特征进行分析,这些特征作为SVM的输入,用于建立分类模型。通过训练,SVM可以学习到如何根据能量特征区分轴承的工作状态和故障类型。 为了验证所提出方法的有效性...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时