grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(niheisai,grad) fan=np.linalg.norm(np.array(d.astype(float)),ord=2)

时间: 2023-11-29 18:26:08 浏览: 67
这段代码看起来像是在进行牛顿法求解多元函数的最优解。其中 `grad` 是目标函数在当前点处的梯度向量,`heisai` 是目标函数在当前点处的 Hessian 矩阵,`niheisai` 是 Hessian 矩阵的逆矩阵,`d` 是下降方向,`fan` 是下降方向的模长。 具体来说,牛顿法是一种迭代求解的方法,每次迭代的步骤包括以下几个步骤: 1. 计算目标函数在当前点处的梯度向量; 2. 计算目标函数在当前点处的 Hessian 矩阵; 3. 计算 Hessian 矩阵的逆矩阵; 4. 计算下降方向 $d=-\text{H}^{-1}\nabla f$; 5. 计算下降方向的模长 $\|d\|$; 6. 更新当前点的位置 $x_{k+1}=x_k+\alpha_k d$,其中 $\alpha_k$ 是步长。 在这段代码中,前四个步骤已经完成,第五个步骤计算了下降方向的模长,但是缺少了步长的计算,因此需要补充。同时,该代码还需要将变量 `x1` 和 `x2` 的值传入 `f1` 和 `f2` 函数中,否则无法计算梯度向量。
相关问题

import sympy from sympy import diff from sympy import hessian import numpy as np import pandas as pd def f(x1,x2): return 2*x1**2+x2**2 def f1(x1,x2): x=diff(f(x1,x2),x1) return x def f2(x1,x2): y=diff(f(x1,x2),x2) return y def niudun(x1,x2,e): x3=np.array([x1,x2]) x1,x2=sympy.symbols('x1 x2') k=1 grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(niheisai,grad) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) while abs(fan)>e: x4=np.array(x3)+np.array(d) k+=1 x3=x4 x1=x3[0] x2=x3[1] grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(np.array(niheisai),grad) d=pd.DataFrame(d,dtype=np.float16) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) return ("运行次数为:"+k+','+"极值点为:"+x4) x1,x2 = map(float,input("请输入初点:").split(' ')) e= eval(input("请输入精度:")) print(niudun(x1,x2,e))

这段代码实现了牛顿法求解二元函数的最优解,其中 `f` 是目标函数,`f1` 和 `f2` 分别是目标函数关于 $x_1$ 和 $x_2$ 的偏导数,`niudun` 函数使用牛顿法求解最优解。 具体来说,`niudun` 函数的输入参数包括初值点 `(x1, x2)` 和精度 `e`,输出结果包括运行次数和极值点。函数中定义了符号变量 `x1` 和 `x2`,计算梯度向量和 Hessian 矩阵时使用这两个符号变量,而不是具体的数值,这样可以方便地求出梯度向量和 Hessian 矩阵。函数中使用了 `sympy` 库中的 `diff` 函数和 `hessian` 函数来计算目标函数的偏导数和 Hessian 矩阵。 在函数中使用了循环来迭代求解最优解。每次迭代的步骤包括计算梯度向量和 Hessian 矩阵,求解 Hessian 矩阵的逆矩阵,计算下降方向,计算下降方向的模长,更新当前点的位置。循环的终止条件是下降方向的模长小于精度 `e`。 这段代码中有一处错误,即在返回结果时,将运行次数 `k` 直接转换为字符串类型会报错,需要使用 `str(k)` 将其转换为字符串类型。同时,还需要在 `print` 函数中加上括号。另外,最后的返回结果中应该是字符串类型,因此需要将数字和字符串拼接起来。修改后的代码如下: ```python import sympy from sympy import diff, hessian import numpy as np import pandas as pd def f(x1, x2): return 2 * x1**2 + x2**2 def f1(x1, x2): x = diff(f(x1, x2), x1) return x def f2(x1, x2): y = diff(f(x1, x2), x2) return y def niudun(x1, x2, e): x3 = np.array([x1, x2]) x1, x2 = sympy.symbols('x1 x2') k = 1 grad = np.array([f1(x1, x2), f2(x1, x2)]) heisai = hessian(f(x1, x2), (x1, x2)) heisai = np.array(heisai, dtype='float') niheisai = np.linalg.inv(heisai) d = -1 * np.dot(niheisai, grad) fan = np.linalg.norm(np.array(d.astype(float)), ord=2) while abs(fan) > e: x4 = np.array(x3) + np.array(d) k += 1 x3 = x4 x1 = x3[0] x2 = x3[1] grad = np.array([f1(x1, x2), f2(x1, x2)]) heisai = hessian(f(x1, x2), (x1, x2)) heisai = np.array(heisai, dtype='float') niheisai = np.linalg.inv(heisai) d = -1 * np.dot(np.array(niheisai), grad) d = pd.DataFrame(d, dtype=np.float16) fan = np.linalg.norm(np.array(d.astype(float)), ord=2) return "运行次数为:" + str(k) + ',' + "极值点为:" + str(x4) x1, x2 = map(float, input("请输入初点:").split(' ')) e = eval(input("请输入精度:")) print(niudun(x1, x2, e)) ```

帮我分析一下python程序代码from PIL import Image import numpy as np a = (np.array(Image.open("C:/picture/1.jpg").convert('L')).astype('float')) depth = 3. grad = np.gradient(a) grad_x, grad_y = grad grad_x = grad_xdepth/100. grad_y = grad_ydepth/100. A = np.sqrt(grad_x2 + grad_y2 + 1.) uni_x = grad_x/A uni_y = grad_y/A uni_z = 1./A vec_el = np.pi/2.2 vec_az = np.pi/4. dx = np.cos(vec_el)np.cos(vec_az) dy = np.cos(vec_el)np.sin(vec_az) dz = np.sin(vec_el) b = 255(dxuni_x + dyuni_y + dzuni_z) b = b.clip(0, 255) im = Image.fromarray(b.astype('uint8')) im.save("C:/picture/5.jpg")

这段 Python 代码是对一张灰度图像进行处理,生成一张类似于高度图的图片,用于表示图像中每个像素点的深度信息。具体来说,这段代码实现了以下功能: 1. 导入 PIL 库和 numpy 库。 2. 使用 PIL 库中的 Image.open() 方法打开一张图片,并使用 convert() 方法将其转换为灰度图像,最后使用 astype() 方法将其转换为浮点数类型的数组 a。 3. 使用 numpy.gradient() 方法计算图像数组 a 中每个像素点在 x 轴和 y 轴方向上的梯度,返回两个数组 grad_x 和 grad_y。 4. 将 grad_x 和 grad_y 每个元素都乘以一个系数 depth/100,并使用 numpy.sqrt() 方法计算 grad_x^2 + grad_y^2 + 1 的平方根,最终得到一个新的数组 A。 5. 根据 uni_x = grad_x/A,uni_y = grad_y/A 和 uni_z = 1./A 计算每个像素点的法向量。 6. 根据 vec_el 和 vec_az 计算光源的方向向量 (dx, dy, dz)。 7. 根据 b = 255(dxuni_x + dyuni_y + dzuni_z) 计算每个像素点的深度值。 8. 将深度值限制在 0 到 255 之间,并使用 Image.fromarray() 方法将其转换为图像,并使用 save() 方法保存到指定路径。 总的来说,这段代码的主要作用是将一张灰度图像转换为高度图像,用于表示图像中每个像素点的深度信息。
阅读全文

相关推荐

大家在看

recommend-type

NPPExport_0.3.0_32位64位版本.zip

Notepad++ NppExport插件,包含win32 和 x64 两个版本。
recommend-type

建立点击按钮-INTOUCH资料

建立点击按钮 如果需要创建用鼠标单击或触摸(当使用触摸屏时)时可立即执行操作的对象链接,您可以使用“触动按钮触动链接”。这些操作可以是改变离散值离散值离散值离散值、执行动作脚本动作脚本动作脚本动作脚本,显示窗口或隐藏窗口命令。下面是四种触动按钮链接类型: 触动按钮 描述 离散值 用于将任何对象或符号设置成用于控制离散标记名状态的按钮。按钮动作可以是设置、重置、切换、瞬间打开(直接)和瞬间关闭(取反)类型。 动作 允许任何对象、符号或按钮链接最多三种不同的动作脚本:按下时、按下期间和释放时。动作脚本可用于将标记名设置为特定的值、显示和(或)隐藏窗口、启动和控制其它应用程序、执行函数等。 显示窗口 用于将对象或符号设置成单击或触摸时可打开一个或多个窗口的按钮。 隐藏窗口 用于将对象或符号设置成单击或触摸时可关闭一个或 多个窗口的按钮。
recommend-type

深圳大学《数据结构》1-4章练习题

深圳大学《数据结构》1-4章练习题
recommend-type

华为CloudIVS 3000技术主打胶片v1.0(C20190226).pdf

华为CloudIVS 3000技术主打胶片 本文介绍了CloudIVS 3000”是什么?”、“用在哪里?”、 “有什么(差异化)亮点?”,”怎么卖”。
recommend-type

关于初始参数异常时的参数号-无线通信系统arm嵌入式开发实例精讲

5.1 接通电源时的故障诊断 接通数控系统电源时,如果数控系统未正常启动,发生异常时,可能是因为驱动单元未 正常启动。请确认驱动单元的 LED 显示,根据本节内容进行处理。 LED显示 现 象 发生原因 调查项目 处 理 驱动单元的轴编号设定 有误 是否有其他驱动单元设定了 相同的轴号 正确设定。 NC 设定有误 NC 的控制轴数不符 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 AA 与 NC 的初始通信未正常 结束。 与 NC 间的通信异常 电缆是否断线 更换电缆 设定了未使用轴或不可 使用。 DIP 开关是否已正确设定 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 Ab 未执行与 NC 的初始通 信。 与 NC 间的通信异常 电缆是否断线 更换电缆 确认重现性 更换单元。12 通过接通电源时的自我诊 断,检测出单元内的存储 器或 IC 存在异常。 CPU 周边电路异常 检查驱动器周围环境等是否 存在异常。 改善周围环 境 如下图所示,驱动单元上方的 LED 显示如果变为紧急停止(E7)的警告显示,表示已 正常启动。 图 5-3 NC 接通电源时正常的驱动器 LED 显示(第 1 轴的情况) 5.2 关于初始参数异常时的参数号 发生初始参数异常(报警37)时,NC 的诊断画面中,报警和超出设定范围设定的异常 参数号按如下方式显示。 S02 初始参数异常 ○○○○ □ ○○○○:异常参数号 □ :轴名称 在伺服驱动单元(MDS-D/DH –V1/V2)中,显示大于伺服参数号的异常编号时,由于 多个参数相互关联发生异常,请按下表内容正确设定参数。 87

最新推荐

recommend-type

学生信息管理系统-----------无数据库版本

学生信息管理系统-----------无数据库版本。资源来源于网络分享,如有侵权请告知!
recommend-type

2024年福建省村级(居委会)行政区划shp数据集

2024年福建省村级(居委会)行政区划shp数据集 坐标系:WGS1984
recommend-type

win32汇编环境,对话框中显示bmp图像文件

win32汇编环境,对话框中显示bmp图像文件
recommend-type

GitHub Classroom 创建的C语言双链表实验项目解析

资源摘要信息: "list_lab2-AquilesDiosT"是一个由GitHub Classroom创建的实验项目,该项目涉及到数据结构中链表的实现,特别是双链表(doble lista)的编程练习。实验的目标是通过编写C语言代码,实现一个双链表的数据结构,并通过编写对应的测试代码来验证实现的正确性。下面将详细介绍标题和描述中提及的知识点以及相关的C语言编程概念。 ### 知识点一:GitHub Classroom的使用 - **GitHub Classroom** 是一个教育工具,旨在帮助教师和学生通过GitHub管理作业和项目。它允许教师创建作业模板,自动为学生创建仓库,并提供了一个清晰的结构来提交和批改学生作业。在这个实验中,"list_lab2-AquilesDiosT"是由GitHub Classroom创建的项目。 ### 知识点二:实验室参数解析器和代码清单 - 实验参数解析器可能是指实验室中用于管理不同实验配置和参数设置的工具或脚本。 - "Antes de Comenzar"(在开始之前)可能是一个实验指南或说明,指示了实验的前提条件或准备工作。 - "实验室实务清单"可能是指实施实验所需遵循的步骤或注意事项列表。 ### 知识点三:C语言编程基础 - **C语言** 作为编程语言,是实验项目的核心,因此在描述中出现了"C"标签。 - **文件操作**:实验要求只可以操作`list.c`和`main.c`文件,这涉及到C语言对文件的操作和管理。 - **函数的调用**:`test`函数的使用意味着需要编写测试代码来验证实验结果。 - **调试技巧**:允许使用`printf`来调试代码,这是C语言程序员常用的一种简单而有效的调试方法。 ### 知识点四:数据结构的实现与应用 - **链表**:在C语言中实现链表需要对结构体(struct)和指针(pointer)有深刻的理解。链表是一种常见的数据结构,链表中的每个节点包含数据部分和指向下一个节点的指针。实验中要求实现的双链表,每个节点除了包含指向下一个节点的指针外,还包含一个指向前一个节点的指针,允许双向遍历。 ### 知识点五:程序结构设计 - **typedef struct Node Node;**:这是一个C语言中定义类型别名的语法,可以使得链表节点的声明更加清晰和简洁。 - **数据结构定义**:在`Node`结构体中,`void * data;`用来存储节点中的数据,而`Node * next;`用来指向下一个节点的地址。`void *`表示可以指向任何类型的数据,这提供了灵活性来存储不同类型的数据。 ### 知识点六:版本控制系统Git的使用 - **不允许使用git**:这是实验的特别要求,可能是为了让学生专注于学习数据结构的实现,而不涉及版本控制系统的使用。在实际工作中,使用Git等版本控制系统是非常重要的技能,它帮助开发者管理项目版本,协作开发等。 ### 知识点七:项目文件结构 - **文件命名**:`list_lab2-AquilesDiosT-main`表明这是实验项目中的主文件。在实际的文件系统中,通常会有多个文件来共同构成一个项目,如源代码文件、头文件和测试文件等。 总结而言,"list_lab2-AquilesDiosT"实验项目要求学生运用C语言编程知识,实现双链表的数据结构,并通过编写测试代码来验证实现的正确性。这个过程不仅考察了学生对C语言和数据结构的掌握程度,同时也涉及了软件开发中的基本调试方法和文件操作技能。虽然实验中禁止了Git的使用,但在现实中,版本控制的技能同样重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【三态RS锁存器CD4043的秘密】:从入门到精通的电路设计指南(附实际应用案例)

# 摘要 三态RS锁存器CD4043是一种具有三态逻辑工作模式的数字电子元件,广泛应用于信号缓冲、存储以及多路数据选择等场合。本文首先介绍了CD4043的基础知识和基本特性,然后深入探讨其工作原理和逻辑行为,紧接着阐述了如何在电路设计中实践运用CD4043,并提供了高级应用技巧和性能优化策略。最后,针对CD4043的故障诊断与排错进行了详细讨论,并通过综合案例分析,指出了设计挑战和未来发展趋势。本文旨在为电子工程师提供全面的CD4043应用指南,同时为相关领域的研究提供参考。 # 关键字 三态RS锁存器;CD4043;电路设计;信号缓冲;故障诊断;微控制器接口 参考资源链接:[CD4043
recommend-type

霍夫曼四元编码matlab

霍夫曼四元码(Huffman Coding)是一种基于频率最优的编码算法,常用于数据压缩中。在MATLAB中,你可以利用内置函数来生成霍夫曼树并创建对应的编码表。以下是简单的步骤: 1. **收集数据**:首先,你需要一个数据集,其中包含每个字符及其出现的频率。 2. **构建霍夫曼树**:使用`huffmandict`函数,输入字符数组和它们的频率,MATLAB会自动构建一棵霍夫曼树。例如: ```matlab char_freq = [freq1, freq2, ...]; % 字符频率向量 huffTree = huffmandict(char_freq);
recommend-type

MATLAB在AWS上的自动化部署与运行指南

资源摘要信息:"AWS上的MATLAB是MathWorks官方提供的参考架构,旨在简化用户在Amazon Web Services (AWS) 上部署和运行MATLAB的流程。该架构能够让用户自动执行创建和配置AWS基础设施的任务,并确保可以在AWS实例上顺利运行MATLAB软件。为了使用这个参考架构,用户需要拥有有效的MATLAB许可证,并且已经在AWS中建立了自己的账户。 具体的参考架构包括了分步指导,架构示意图以及一系列可以在AWS环境中执行的模板和脚本。这些资源为用户提供了详细的步骤说明,指导用户如何一步步设置和配置AWS环境,以便兼容和利用MATLAB的各种功能。这些模板和脚本是自动化的,减少了手动配置的复杂性和出错概率。 MathWorks公司是MATLAB软件的开发者,该公司提供了广泛的技术支持和咨询服务,致力于帮助用户解决在云端使用MATLAB时可能遇到的问题。除了MATLAB,MathWorks还开发了Simulink等其他科学计算软件,与MATLAB紧密集成,提供了模型设计、仿真和分析的功能。 MathWorks对云环境的支持不仅限于AWS,还包括其他公共云平台。用户可以通过访问MathWorks的官方网站了解更多信息,链接为www.mathworks.com/cloud.html#PublicClouds。在这个页面上,MathWorks提供了关于如何在不同云平台上使用MATLAB的详细信息和指导。 在AWS环境中,用户可以通过参考架构自动化的模板和脚本,快速完成以下任务: 1. 创建AWS资源:如EC2实例、EBS存储卷、VPC(虚拟私有云)和子网等。 2. 配置安全组和网络访问控制列表(ACLs),以确保符合安全最佳实践。 3. 安装和配置MATLAB及其相关产品,包括Parallel Computing Toolbox、MATLAB Parallel Server等,以便利用多核处理和集群计算。 4. 集成AWS服务,如Amazon S3用于存储,AWS Batch用于大规模批量处理,Amazon EC2 Spot Instances用于成本效益更高的计算任务。 此外,AWS上的MATLAB架构还包括了监控和日志记录的功能,让用户能够跟踪和分析运行状况,确保应用程序稳定运行。用户还可以根据自己的需求自定义和扩展这些模板和脚本。 在使用AWS上的MATLAB之前,用户需要了解MathWorks的许可协议,明确自己的许可证是否允许在云环境中使用MATLAB,并确保遵守相关法律法规。MathWorks提供了广泛的资源和支持,帮助用户快速上手,有效利用AWS资源,以及在云端部署和扩展MATLAB应用程序。 综上所述,AWS上的MATLAB参考架构是为希望在AWS云平台上部署MATLAB的用户提供的一种快速、简便的解决方案。它不仅减少了手动配置的复杂性,还为用户提供了广泛的资源和指导,以确保用户能够在云环境中高效、安全地使用MATLAB。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

铁路售票系统用例图:异常流处理的黄金法则

![铁路售票系统用例图:异常流处理的黄金法则](https://opengraph.githubassets.com/afac9d71167fe51e2e95e6b89ecf588c94077f4e2d4e82c217ba436f21dce30d/DarshanGH/Railway-Ticket-Booking-System) # 摘要 本文全面探讨了铁路售票系统的异常流处理问题,阐述了用例图在系统设计中的重要性及其绘制方法,同时分析了异常流的定义、设计原则、最佳实践及其在铁路售票系统中的应用。文章进一步深入到异常流识别、分类、处理流程设计以及用户界面处理的策略,确保异常情况下的系统稳定性和