免疫遗传算法求解TSP
时间: 2023-09-15 22:21:22 浏览: 127
免疫遗传算法是一种基于免疫系统的优化算法,它能够有效地解决许多优化问题,包括TSP问题。
在免疫遗传算法中,每个解都被编码为一个抗体,抗体的结构可以是二进制串或浮点数,这取决于具体的问题。在TSP问题中,可以将每个解表示为一个城市序列。
算法的基本流程如下:
1. 初始化种群,每个个体表示为一个城市序列;
2. 计算每个个体的适应度,即旅行商经过这些城市的总路程;
3. 通过选择、交叉和变异操作产生新的个体,并计算它们的适应度;
4. 将新的个体与原有个体合并,形成新的种群;
5. 利用免疫算法的思想,通过克隆、突变和选择操作来增加个体的多样性;
6. 重复执行步骤2到5,直到满足停止准则。
在这个过程中,需要注意的是,免疫遗传算法的核心思想是多样性维持和抗体互补,因此需要采取一些措施来避免早熟收敛和陷入局部最优解。
总之,免疫遗传算法是一种有效的求解TSP问题的优化算法,它的优点在于可以维持种群的多样性,从而增加搜索空间。但是,算法的效率和准确性取决于参数的设置和操作的选择,需要进行合理的调整和优化。
相关问题
免疫遗传算法求解TSP问题的matlab代码
以下是一个简单的MATLAB代码,用于使用免疫遗传算法解决TSP问题:
```matlab
% 定义问题参数
num_cities = 10; % 城市数量
num_population = 20; % 种群数量
num_generations = 100; % 迭代次数
% 生成城市位置随机矩阵
cities = rand(num_cities, 2);
% 初始化种群
population = zeros(num_population, num_cities);
for i = 1:num_population
population(i,:) = randperm(num_cities);
end
% 计算每个个体的适应度
fitness = zeros(num_population, 1);
for i = 1:num_population
fitness(i) = tsp_fitness(population(i,:), cities);
end
% 迭代
for gen = 1:num_generations
% 选择
selected_indices = tournament_selection(fitness, 2);
parent1 = population(selected_indices(1), :);
parent2 = population(selected_indices(2), :);
% 交叉
child = tsp_crossover(parent1, parent2);
% 变异
child = tsp_mutation(child);
% 计算子代适应度
child_fitness = tsp_fitness(child, cities);
% 替换
[worst_fitness, worst_index] = max(fitness);
if child_fitness < worst_fitness
population(worst_index,:) = child;
fitness(worst_index) = child_fitness;
end
% 输出当前最佳解
[best_fitness, best_index] = min(fitness);
best_solution = population(best_index,:);
fprintf('Generation %d, Best fitness: %f\n', gen, best_fitness);
end
% 绘制最佳路径
figure;
plot(cities(best_solution,1), cities(best_solution,2), 'o-');
axis equal;
title('Best Path');
% 定义适应度函数
function fitness = tsp_fitness(solution, cities)
num_cities = length(solution);
fitness = 0;
for i = 1:num_cities-1
fitness = fitness + norm(cities(solution(i),:) - cities(solution(i+1),:));
end
fitness = fitness + norm(cities(solution(num_cities),:) - cities(solution(1),:));
end
% 定义竞赛选择函数
function selected_indices = tournament_selection(fitness, num_selected)
num_population = length(fitness);
selected_indices = zeros(num_selected,1);
for i = 1:num_selected
tournament_indices = randperm(num_population, 2);
if fitness(tournament_indices(1)) < fitness(tournament_indices(2))
selected_indices(i) = tournament_indices(1);
else
selected_indices(i) = tournament_indices(2);
end
end
end
% 定义交叉函数
function child = tsp_crossover(parent1, parent2)
num_cities = length(parent1);
crossover_point = randi([1 num_cities-1]);
child = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
remaining_cities = setdiff(parent1, child);
for i = 1:length(remaining_cities)
if rand < 0.5
child = [child, remaining_cities(i)];
end
end
end
% 定义变异函数
function child = tsp_mutation(parent)
num_cities = length(parent);
mutation_point1 = randi([1 num_cities-1]);
mutation_point2 = randi([1 num_cities-1]);
child = parent;
child(mutation_point1) = parent(mutation_point2);
child(mutation_point2) = parent(mutation_point1);
end
```
这段代码使用了竞赛选择、部分映射交叉和随机交换变异等算法来优化TSP问题,其中使用了适应度函数对每个解进行评估。
基于MATLAB的免疫遗传算法求解TSP实例
以下是MATLAB代码实现免疫遗传算法求解TSP问题的示例:
% TSP问题实例
city = [0, 0; 2, 3; 4, 3; 6, 1; 7, 5; 8, 0; 10, 2; 11, 6; 12, 4; 14, 5];
% 初始化参数
pop_size = 100; % 种群大小
max_gen = 200; % 最大迭代次数
p_crossover = 0.9; % 交叉概率
p_mutation = 0.1; % 变异概率
n_elite = 10; % 精英数量
n_imm = 10; % 免疫数量
n_sel = pop_size - n_elite - n_imm; % 选择数量
% 初始化种群
pop = zeros(pop_size, size(city, 1));
for i = 1:pop_size
pop(i, :) = randperm(size(city, 1));
end
% 迭代
for gen = 1:max_gen
% 计算适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = tsp_fitness(pop(i, :), city);
end
% 选择
[fitness_sorted, idx] = sort(fitness, 'ascend');
elite = pop(idx(1:n_elite), :);
imm = pop(idx(n_elite+1:n_elite+n_imm), :);
sel_idx = rws(fitness_sorted(n_elite+n_imm+1:end), n_sel);
sel = pop(idx(n_elite+n_imm+sel_idx), :);
% 交叉
offspring = zeros(size(sel));
for i = 1:size(sel, 1)/2
if rand < p_crossover
[offspring(2*i-1,:), offspring(2*i,:)] = tsp_crossover(sel(2*i-1,:), sel(2*i,:));
else
offspring(2*i-1,:) = sel(2*i-1,:);
offspring(2*i,:) = sel(2*i,:);
end
end
% 变异
for i = 1:size(offspring, 1)
if rand < p_mutation
offspring(i,:) = tsp_mutation(offspring(i,:));
end
end
% 合并种群
pop = [elite; imm; offspring];
end
% 计算最优路径
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = tsp_fitness(pop(i, :), city);
end
[~, idx] = min(fitness);
best_path = pop(idx, :);
best_fitness = fitness(idx);
% 绘图
figure;
plot(city(:,1), city(:,2), 'o');
hold on;
plot(city(best_path,1), city(best_path,2), '-');
title(sprintf('Best Fitness = %f', best_fitness));
% TSP适应度函数
function fitness = tsp_fitness(path, city)
fitness = 0;
for i = 1:length(path)-1
fitness = fitness + norm(city(path(i),:) - city(path(i+1),:));
end
fitness = fitness + norm(city(path(end),:) - city(path(1),:));
end
% TSP交叉函数
function [offspring1, offspring2] = tsp_crossover(parent1, parent2)
len = length(parent1);
pt1 = randi(len-1);
pt2 = randi([pt1+1, len]);
mask = zeros(1, len);
mask(pt1:pt2) = 1;
offspring1 = zeros(1, len);
offspring2 = zeros(1, len);
offspring1(mask==1) = parent1(mask==1);
offspring2(mask==1) = parent2(mask==1);
idx1 = find(~ismember(parent2, offspring1));
idx2 = find(~ismember(parent1, offspring2));
offspring1(idx2) = parent2(idx1);
offspring2(idx1) = parent1(idx2);
end
% TSP变异函数
function offspring = tsp_mutation(parent)
len = length(parent);
pt1 = randi(len);
pt2 = randi(len);
while pt2 == pt1
pt2 = randi(len);
end
offspring = parent;
offspring([pt1 pt2]) = offspring([pt2 pt1]);
end
% 轮盘赌选择函数
function idx = rws(fitness, n_select)
total_fitness = sum(fitness);
p = fitness / total_fitness;
c = cumsum(p);
idx = zeros(n_select, 1);
for i = 1:n_select
r = rand;
j = find(c>=r, 1);
idx(i) = j;
end
end
阅读全文