UDP组播的原理及VC++ 多线程实现发送,接收的程序代码

时间: 2023-06-04 18:08:02 浏览: 404
UDP组播是基于IP多播技术实现的。IP多播是一种将数据包从一个源地址同时传输到多个目的地址的技术。在IP多播中,源地址标识了数据包发送方的IP地址,目的地址标识了多播组的IP地址。多播组的IP地址通常是一个特殊的地址,即D类IP地址(224.0.0.0~239.255.255.255)。多播组的地址由网络管理员分配,用于标识一个多播组。 UDP多播的原理是,将数据包从一个源地址同时传输到多个目的地址。数据包在传输过程中不需要建立连接,因此发送速度快,但可靠性低。UDP多播可以通过指定多播地址来进行多播,多播地址是D类IP地址。 以下是VC多线程实现UDP组播的发送和接收程序代码: 发送端代码: ``` #include <stdio.h> #include <winsock2.h> #pragma comment(lib, "ws2_32.lib") int main() { WSADATA wsaData; int retVal; // Initialize Winsock retVal = WSAStartup(MAKEWORD(2, 2), &wsaData); if (retVal != 0) { printf("WSAStartup failed: %d\n", retVal); return 1; } // Create a socket for sending data SOCKET SendSocket; SendSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (SendSocket == INVALID_SOCKET) { printf("socket failed: %ld\n", WSAGetLastError()); WSACleanup(); return 1; } // Set the TTL value for the outgoing packets int TTL = 2; retVal = setsockopt(SendSocket, IPPROTO_IP, IP_MULTICAST_TTL, (char*)&TTL, sizeof(TTL)); if (retVal == SOCKET_ERROR) { printf("setsockopt failed: %d\n", WSAGetLastError()); closesocket(SendSocket); WSACleanup(); return 1; } // Set up the destination address for sending the multicast message char* MulticastAddr = "239.255.1.1"; struct sockaddr_in DestAddr; DestAddr.sin_family = AF_INET; DestAddr.sin_addr.s_addr = inet_addr(MulticastAddr); DestAddr.sin_port = htons(1234); // Send the multicast message using multiple threads const int NumThreads = 4; HANDLE hThreads[NumThreads]; for (int i = 0; i < NumThreads; i++) { hThreads[i] = CreateThread(NULL, 0, SendThreadFunc, (LPVOID)&SendSocket, 0, NULL); if (hThreads[i] == NULL) { printf("CreateThread failed: %d\n", GetLastError()); closesocket(SendSocket); WSACleanup(); return 1; } } // Wait for all threads to terminate WaitForMultipleObjects(NumThreads, hThreads, TRUE, INFINITE); // Close the socket and clean up Winsock closesocket(SendSocket); WSACleanup(); return 0; } DWORD WINAPI SendThreadFunc(LPVOID lpParam) { SOCKET* pSendSocket = (SOCKET*)lpParam; // Send a multicast message char* MulticastMsg = "Hello, world!"; const int MsgLen = strlen(MulticastMsg); int retVal = sendto(*pSendSocket, MulticastMsg, MsgLen, 0, (struct sockaddr*)&DestAddr, sizeof(DestAddr)); if (retVal == SOCKET_ERROR) { printf("sendto failed: %d\n", WSAGetLastError()); return 1; } return 0; } ``` 接收端代码: ``` #include <stdio.h> #include <winsock2.h> #pragma comment(lib, "ws2_32.lib") int main() { WSADATA wsaData; int retVal; // Initialize Winsock retVal = WSAStartup(MAKEWORD(2, 2), &wsaData); if (retVal != 0) { printf("WSAStartup failed: %d\n", retVal); return 1; } // Create a socket for receiving data SOCKET RecvSocket; RecvSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (RecvSocket == INVALID_SOCKET) { printf("socket failed: %ld\n", WSAGetLastError()); WSACleanup(); return 1; } // Bind the socket to the local address struct sockaddr_in LocalAddr; LocalAddr.sin_family = AF_INET; LocalAddr.sin_addr.s_addr = htonl(INADDR_ANY); LocalAddr.sin_port = htons(1234); retVal = bind(RecvSocket, (struct sockaddr*)&LocalAddr, sizeof(LocalAddr)); if (retVal == SOCKET_ERROR) { printf("bind failed: %d\n", WSAGetLastError()); closesocket(RecvSocket); WSACleanup(); return 1; } // Join the multicast group char* MulticastAddr = "239.255.1.1"; struct ip_mreq Mreq; Mreq.imr_multiaddr.s_addr = inet_addr(MulticastAddr); Mreq.imr_interface.s_addr = htonl(INADDR_ANY); retVal = setsockopt(RecvSocket, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char*)&Mreq, sizeof(Mreq)); if (retVal == SOCKET_ERROR) { printf("setsockopt failed: %d\n", WSAGetLastError()); closesocket(RecvSocket); WSACleanup(); return 1; } // Receive multicast messages while (true) { char RecvBuf[1024]; struct sockaddr_in SenderAddr; int SenderAddrLen = sizeof(SenderAddr); int NumBytes = recvfrom(RecvSocket, RecvBuf, sizeof(RecvBuf), 0, (struct sockaddr*)&SenderAddr, &SenderAddrLen); if (NumBytes == SOCKET_ERROR) { printf("recvfrom failed: %d\n", WSAGetLastError()); break; } else { RecvBuf[NumBytes] = '\0'; printf("Received multicast message from %s: %s\n", inet_ntoa(SenderAddr.sin_addr), RecvBuf); } } // Leave the multicast group, close the socket, and clean up Winsock setsockopt(RecvSocket, IPPROTO_IP, IP_DROP_MEMBERSHIP, (char*)&Mreq, sizeof(Mreq)); closesocket(RecvSocket); WSACleanup(); return 0; } ```

相关推荐

最新推荐

recommend-type

python3通过udp实现组播数据的发送和接收操作

主要介绍了python3通过udp实现组播数据的发送和接收操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

UDP 组播通信 源码教程

采用UDP组播通信技术,在VC平台下实现的组播通信。 提供详尽的源代码,编程步骤。绝对是学下的好资源。
recommend-type

python基于socket实现的UDP及TCP通讯功能示例

主要介绍了python基于socket实现的UDP及TCP通讯功能,结合实例形式分析了基于Python socket模块的UDP及TCP通信相关客户端、服务器端实现技巧,需要的朋友可以参考下
recommend-type

python实现udp传输图片功能

主要为大家详细介绍了python实现udp传输图片功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

UDP聊天系统,使用线程实现多次聊天

UDP聊天系统,使用线程实现多次聊天。有助于理解SOCKET,和UDP的工作原理。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。