GEE中加权总和5个植被指数的代码
时间: 2023-12-10 09:36:55 浏览: 72
gee计算遥感生态指数代码
以下是在GEE中加权总和5个植被指数的代码:
```javascript
// Load MODIS collection
var modis = ee.ImageCollection('MODIS/006/MOD13A2');
// Define region of interest (ROI)
var roi = ee.Geometry.Point([0, 0]).buffer(100);
// Define start and end date
var start = ee.Date('2018-01-01');
var end = ee.Date('2018-12-31');
// Filter collection by date and ROI
var modisFiltered = modis.filterDate(start, end).filterBounds(roi);
// Define weights for each vegetation index
var ndviWeight = 0.4;
var eviWeight = 0.2;
var ndwiWeight = 0.1;
var lswiWeight = 0.2;
var ndmiWeight = 0.1;
// Calculate weighted sum of vegetation indices
var weightedSum = modisFiltered.map(function(image) {
var ndvi = image.select('NDVI').multiply(ndviWeight);
var evi = image.select('EVI').multiply(eviWeight);
var ndwi = image.select('NDWI').multiply(ndwiWeight);
var lswi = image.select('LSWI').multiply(lswiWeight);
var ndmi = image.select('NDMI').multiply(ndmiWeight);
var sum = ndvi.add(evi).add(ndwi).add(lswi).add(ndmi);
return sum.copyProperties(image, image.propertyNames());
});
// Compute mean of weighted sum
var meanWeightedSum = weightedSum.mean();
// Display result
Map.addLayer(meanWeightedSum, {min: -2000, max: 10000}, 'Mean Weighted Sum');
```
在这个例子中,我们加载了MODIS植被指数集合,并定义了一个感兴趣区域(ROI),然后按日期和ROI过滤了集合。接下来,我们为每个植被指数定义了一个权重,并计算了每个像素的加权总和。最后,我们计算了加权总和的平均值,并在地图上显示了结果。
阅读全文