DeepLabCut-live实例代码
时间: 2023-07-27 19:13:22 浏览: 114
DeepLabCut-live是一个基于DeepLabCut的实时姿态估计工具。以下是一个示例代码,展示如何使用DeepLabCut-live来实时估计姿态。
```python
import cv2
import numpy as np
import deeplabcut_live
# Load the config file and the trained model
config_file = 'path/to/config.yaml'
dlc_model = 'path/to/trained/model.h5'
# Define the video capture device
cap = cv2.VideoCapture(0)
# Set up the DeepLabCut-live object
dlc = deeplabcut_live.DLCModel(config_file, dlc_model)
while True:
# Capture frame-by-frame
ret, frame = cap.read()
# Flip the frame horizontally for intuitive movement
frame = cv2.flip(frame, 1)
# Process the frame with DeepLabCut-live
dlc.process_frame(frame)
# Draw the predicted landmarks on the frame
frame = dlc.draw_predictions(frame)
# Display the resulting frame
cv2.imshow('frame', frame)
# Exit if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the capture
cap.release()
cv2.destroyAllWindows()
```
在上述代码中,我们首先导入了所需的库和DeepLabCut-live模块。然后,我们加载了配置文件和训练好的模型。接着,我们定义了视频捕获设备并初始化了DeepLabCut-live对象。然后,我们开始循环读取帧并对每一帧进行姿态估计和绘制。最后,我们展示了结果,并在按下'q'键时退出循环。
请注意,在使用此代码之前,需要安装DeepLabCut和DeepLabCut-live,并创建一个配置文件和训练模型。
阅读全文