DeepLabCut-live详细实例代码
时间: 2023-08-02 22:10:36 浏览: 167
DeepLabCut-live是一个基于DeepLabCut的实时物体姿态估计工具,可以用于实时跟踪动物或人的姿态。以下是一个详细的实例代码,可以帮助您开始使用DeepLabCut-live:
```python
import cv2
import numpy as np
import deeplabcut
# Load the DeepLabCut model
config_path = 'path/to/config.yaml'
dlc_model = deeplabcut.load_model(config_path)
# Open the video stream
cap = cv2.VideoCapture(0)
while True:
# Capture the frame
ret, frame = cap.read()
# Resize the frame
resized_frame = cv2.resize(frame, (640, 480))
# Make a prediction with DeepLabCut
dlc_prediction = deeplabcut.predict_single_image(dlc_model, resized_frame)
# Draw the skeleton on the frame
for i, (x, y) in enumerate(zip(dlc_prediction['x'], dlc_prediction['y'])):
cv2.circle(frame, (int(x), int(y)), 3, (0, 0, 255), -1)
if i > 0:
cv2.line(frame, (int(dlc_prediction['x'][i-1]), int(dlc_prediction['y'][i-1])),
(int(x), int(y)), (0, 0, 255), 2)
# Show the frame
cv2.imshow('frame', frame)
# Exit if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the video stream and close the window
cap.release()
cv2.destroyAllWindows()
```
在这个例子中,我们首先加载DeepLabCut模型,然后打开视频流并开始循环。在循环中,我们首先捕获每一帧并对其进行调整大小。然后,我们使用DeepLabCut模型对调整大小的帧进行预测,并在帧上绘制骨架。最后,我们显示帧,并在按下“q”键时退出循环并关闭窗口。
请注意,这只是一个示例代码,并且您需要根据自己的需求进行修改和调整。
阅读全文