解析一下const obj = { 2: 5, 3: 6, 4: 7 } obj[Symbol.iterator] = function () { return { next: function () { if (this._countDown === 3) { return { value: this._countDown, done: true } } this._countDown = this._countDown + 1 return { value: obj[this._countDown], done: false } }, _countDown: 0, } } for (const i of obj) { console.log(i) }
时间: 2024-04-23 11:23:01 浏览: 93
这段代码中定义了一个名为 `obj` 的对象,它有三个属性 `2`、`3` 和 `4`,分别对应着值 `5`、`6` 和 `7`。然后通过 `obj[Symbol.iterator]` 方法给 `obj` 对象添加了一个迭代器,这个迭代器包含一个 `_countDown` 属性和一个 `next` 方法。迭代器的 `next` 方法会根据 `_countDown` 属性的值返回下一个迭代的对象,其中 `value` 属性为 `obj` 对象中下一个键对应的值,`done` 属性表示是否已经迭代完成。当 `_countDown` 属性的值为 `3` 时,迭代器返回 `{ value: this._countDown, done: true }`,表示迭代已经完成。否则,迭代器会将 `_countDown` 属性的值加 1,然后返回 `{ value: obj[this._countDown], done: false }`,表示迭代还未完成。最后,使用 `for...of` 循环遍历 `obj` 对象,循环内部通过迭代器的 `next` 方法获取下一个值并输出。输出的结果为 `5`、`6` 和 `7`。
相关问题
nvalid attempt to destructure non-iterable instance. In order to be iterable, non-array objects must have a [Symbol.iterator]() method.
这个错误通常是在尝试解构非可迭代实例时出现的。解构是将数组或对象中的值分配给变量的过程。如果你尝试对非数组或非可迭代对象进行解构,就会出现这个错误。为了解决这个问题,你需要确保你的对象是可迭代的,或者使用其他方法来访问对象的属性。
以下是一些解决方法:
1.确保你的对象是可迭代的,例如数组或具有[Symbol.iterator]方法的对象。
2.使用对象的属性来访问它的值,而不是尝试解构它。
3.使用try-catch语句来捕获错误并处理它们。
```javascript
// 示例代码
const obj = { name: 'John', age: 30 };
const { name, age } = obj; // 正确的解构方式
const obj2 = { name: 'John', age: 30 };
for (let key in obj2) {
console.log(obj2[key]); // 使用对象的属性来访问它的值
}
const obj3 = { name: 'John', age: 30 };
try {
const { name, age } = obj3;
} catch (e) {
console.log('Error:', e.message); // 使用try-catch语句来捕获错误并处理它们
}
```
将下列代码改为vs内可运行的代码:float smoothCot() { float err = -1; cogs.clear(); v_end = mesh.vertices_end(); // for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it) { cog[0] = cog[1] = cog[2] = valence = 0.0; for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it) { double cot_weight = 0.0; MyMesh::HalfedgeHandle heh = mesh.find_halfedge(*v_it, *vv_it); if (!mesh.is_boundary(heh)) { MyMesh::HalfedgeHandle prev_heh = mesh.prev_halfedge_handle(heh); MyMesh::HalfedgeHandle next_heh = mesh.next_halfedge_handle(heh); MyMesh::VertexHandle prev_vh = mesh.to_vertex_handle(prev_heh); MyMesh::VertexHandle next_vh = mesh.to_vertex_handle(next_heh); MyMesh::Point prev_p = mesh.point(prev_vh); MyMesh::Point curr_p = mesh.point(*v_it); MyMesh::Point next_p = mesh.point(next_vh); double cot_alpha = cot(prev_p - curr_p, next_p - curr_p); double cot_beta = cot(curr_p - prev_p, next_p - prev_p); cot_weight = cot_alpha + cot_beta; } cog += cot_weight * mesh.point(*vv_it); valence += cot_weight; } cogs.push_back(cog / valence); } for (v_it = mesh.vertices_begin(), cog_it = cogs.begin(); v_it != v_end; ++v_it, ++cog_it) { if (!mesh.is_boundary(*v_it)) { MyMesh::Point p = mesh.point(*v_it); err = max(err, (p - *cog_it).norm()); mesh.set_point(*v_it, *cog_it); } } return err; }
请注意,代码中使用了 MyMesh 类型,需要先定义和引入该类型,以下是修改后的可运行代码:
```c++
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <vector>
typedef OpenMesh::TriMesh_ArrayKernelT<> MyMesh;
float smoothCot(MyMesh& mesh) {
float err = -1;
std::vector<MyMesh::Point> cogs;
cogs.reserve(mesh.n_vertices());
MyMesh::VertexIter v_it, v_end;
MyMesh::VertexVertexIter vv_it;
MyMesh::Point cog;
double valence;
v_end = mesh.vertices_end();
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it) {
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it) {
double cot_weight = 0.0;
MyMesh::HalfedgeHandle heh = mesh.find_halfedge(*v_it, *vv_it);
if (!mesh.is_boundary(heh)) {
MyMesh::HalfedgeHandle prev_heh = mesh.prev_halfedge_handle(heh);
MyMesh::HalfedgeHandle next_heh = mesh.next_halfedge_handle(heh);
MyMesh::VertexHandle prev_vh = mesh.to_vertex_handle(prev_heh);
MyMesh::VertexHandle next_vh = mesh.to_vertex_handle(next_heh);
MyMesh::Point prev_p = mesh.point(prev_vh);
MyMesh::Point curr_p = mesh.point(*v_it);
MyMesh::Point next_p = mesh.point(next_vh);
double cot_alpha = cot(prev_p - curr_p, next_p - curr_p);
double cot_beta = cot(curr_p - prev_p, next_p - prev_p);
cot_weight = cot_alpha + cot_beta;
}
cog += cot_weight * mesh.point(*vv_it);
valence += cot_weight;
}
cogs.push_back(cog / valence);
}
std::vector<MyMesh::Point>::iterator cog_it = cogs.begin();
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it, ++cog_it) {
if (!mesh.is_boundary(*v_it)) {
MyMesh::Point p = mesh.point(*v_it);
err = std::max(err, (p - *cog_it).norm());
mesh.set_point(*v_it, *cog_it);
}
}
return err;
}
int main(int argc, char **argv) {
MyMesh mesh;
if (!OpenMesh::IO::read_mesh(mesh, argv[1])) {
std::cerr << "read error\n";
return 1;
}
std::cout << "smoothCot error: " << smoothCot(mesh) << std::endl;
if (!OpenMesh::IO::write_mesh(mesh, "output.obj")) {
std::cerr << "write error\n";
return 1;
}
return 0;
}
```
其中,cot 函数需要自己实现,如下:
```c++
double cot(const MyMesh::Point& v1, const MyMesh::Point& v2) {
return std::tan(MyMesh::Angle(v1, v2));
}
```
请注意,以上代码仅供参考,可能存在错误或不足之处,需要结合具体情况进行修改和完善。
阅读全文