随机森林python代码实现
时间: 2023-07-10 07:19:44 浏览: 107
以下是一个简单的随机森林Python代码实现示例:
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
# 创建一个随机的分类数据集
X, y = make_classification(n_samples=1000, n_features=4, n_informative=2, n_redundant=0, random_state=0, shuffle=False)
# 创建一个随机森林分类器
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0)
# 使用训练数据拟合分类器
clf.fit(X, y)
# 使用分类器进行预测
y_pred = clf.predict(X)
# 打印预测结果
print(y_pred)
```
该代码使用`sklearn`库中的`RandomForestClassifier`类来实现随机森林分类器。首先,创建一个随机的分类数据集`X`和`y`,然后创建一个随机森林分类器`clf`。接下来,使用训练数据`X`和`y`拟合分类器,并使用`predict`方法进行预测。最后,打印预测结果`y_pred`。
阅读全文