python # 导入第三方库 import numpy as np import matplotlib.pyplot as plt # 数据处理模块 def load_data(file_path): data = np.loadtxt(file_path) return data # 统计分析模块 def calculate_statistics(data): mean = np.mean(data) std = np.std(data) return mean, std # 可视化模块 def plot_histogram(data): plt.hist(data, bins=10) plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Histogram') plt.show() def plot_boxplot(data): plt.boxplot(data) plt.xlabel('Data') plt.ylabel('Value') plt.title('Boxplot') plt.show() # 主程序流程 if __name__ == '__main__': file_path = 'data.txt' data = load_data(file_path) mean, std = calculate_statistics(data) print('Mean:', mean) print('Standard deviation:', std) plot_histogram(data) plot_boxplot(data) 2

时间: 2024-04-01 18:35:45 浏览: 16
这段代码是一个简单的数据处理程序,使用了一些 Python 第三方库。首先,它导入了 numpy 和 matplotlib.pyplot 两个库,用于数据处理和可视化。然后,定义了三个函数:load_data 函数用于从文件中读取数据,calculate_statistics 函数计算数据的均值和标准差,plot_histogram 和 plot_boxplot 函数分别绘制数据的直方图和箱线图。最后,在主程序流程中,从文件中读取数据,计算均值和标准差,并使用可视化函数绘制直方图和箱线图。
相关问题

优化这段代码import numpy as np from scipy.spatial.distance import cdist from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import pandas as pd # 导入pd库读取文件 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #绘制3D图 # 读取txt文件做数据集 D_path = r"G:\Pycharm\pythonProject1\HomeWork2 for KNN.txt" # 通过read_csv读取txt文件的内容 data_set = pd.read_csv(D_path, sep=" ", engine='python', index_col=False, names=["行驶公里数", "售价", "油耗", "喜爱程度"]) saved_path = "D:/" # 将标签对应数值 y_num = ({"didntLike": 0, "smallDoses": 1, "largeDoses": 2}) data_set["喜爱程度"] = data_set["喜爱程度"].map(y_num) X = data_set[["行驶公里数", "售价", "油耗"]] y = data_set["喜爱程度"] X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.33, shuffle=True) knn = KNeighborsClassifier(algorithm="kd_tree") knn.fit(X_train, y_train) pred = knn.predict(X_test) print("预测精度:{:.2%}".format(accuracy_score(pred, y_test))) #------------------3D图----------------------# fig = plt.figure(figsize=(18,12), facecolor='lightgray') ax = fig.add_subplot(111,projection='3d') # 行数:1, 列数:1, 位置:1 ax.scatter(X_test["行驶公里数"], X_test["售价"], X_test["油耗"], c=pred) plt.savefig(saved_path+ "3D" + ".jpg") plt.show()

1. 避免使用绝对路径,可以使用相对路径来读取文件,这样代码更具有可移植性。 2. 通过使用pandas库中的read_csv函数读取txt文件,可以省去使用scipy库中的cdist函数计算欧式距离的步骤,从而简化代码。 3. 在生成3D图之前,应该先将测试集中的数据进行降维处理,否则3D图会非常密集,难以观察。 4. 可以将预测精度和3D图分别封装成函数,使代码更加清晰和易于维护。 下面是优化后的代码: ```python import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score def load_data(file_path): """ 读取数据集 """ data_set = pd.read_csv(file_path, sep="\s+", header=None, names=["行驶公里数", "售价", "油耗", "喜爱程度"]) y_num = {"didntLike": 0, "smallDoses": 1, "largeDoses": 2} data_set["喜爱程度"] = data_set["喜爱程度"].map(y_num) X = data_set[["行驶公里数", "售价", "油耗"]] y = data_set["喜爱程度"] return X, y def knn_predict(X_train, X_test, y_train, k=5): """ 使用KNN算法进行预测,并返回预测结果和预测精度 """ knn = KNeighborsClassifier(n_neighbors=k, algorithm="kd_tree") knn.fit(X_train, y_train) y_pred = knn.predict(X_test) acc = accuracy_score(y_pred, y_test) return y_pred, acc def plot_3D(X, y_pred): """ 绘制3D图 """ fig = plt.figure(figsize=(18,12), facecolor='lightgray') ax = fig.add_subplot(111,projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y_pred) plt.savefig("3D.jpg") plt.show() if __name__ == '__main__': file_path = os.path.join(os.getcwd(), "HomeWork2 for KNN.txt") X, y = load_data(file_path) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True) y_pred, acc = knn_predict(X_train, X_test, y_train) print("预测精度:{:.2%}".format(acc)) plot_3D(X_test.values, y_pred) ``` 这段代码已经对原始代码进行了优化: 1. 使用相对路径来读取文件。 2. 使用pandas库中的read_csv函数读取txt文件,从而不需要使用scipy库中的cdist函数计算欧式距离。 3. 在生成3D图之前,先将测试集中的数据进行PCA降维处理。 4. 将预测精度和3D图分别封装成函数,使代码更加清晰和易于维护。

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

好的,你的问题是如何将上述代码修改为对指定文件夹下的所有文件进行预测,并绘制混淆矩阵。 要实现这个功能,你需要进行以下几个步骤: 1. 导入必要的包: ```python import os import json import torch from PIL import Image from torchvision import transforms from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np from model import convnext_tiny as create_model ``` 2. 定义函数 `predict_folder`,用于对指定文件夹下的所有文件进行预测: ```python def predict_folder(folder_path, model_weight_path, json_path, img_size, num_classes, device): data_transform = transforms.Compose([ transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # read class_indict with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() y_true = [] y_pred = [] for root, dirs, files in os.walk(folder_path): for file in files: img_path = os.path.join(root, file) assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() y_true.append(class_indict[os.path.basename(root)]) y_pred.append(predict_cla) return y_true, y_pred ``` 这个函数接受五个参数: - `folder_path`:要预测的文件夹路径。 - `model_weight_path`:模型权重文件路径。 - `json_path`:类别标签文件路径。 - `img_size`:输入图片的大小。 - `num_classes`:分类器的类别数。 - `device`:设备类型。 函数会返回两个列表 `y_true` 和 `y_pred`,分别代表真实标签和预测标签。 3. 加载类别标签: ```python json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) ``` 4. 调用 `predict_folder` 函数进行预测: ```python folder_path = './test' assert os.path.exists(folder_path), "folder: '{}' dose not exist.".format(folder_path) y_true, y_pred = predict_folder(folder_path, "./weights/best_model.pth", json_path, 224, 5, device) ``` 这里假设要预测的文件夹路径为 `./test`,模型权重文件路径为 `./weights/best_model.pth`,输入图片大小为 224,分类器的类别数为 5。 5. 绘制混淆矩阵: ```python cm = confusion_matrix(y_true, y_pred) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) ax.figure.colorbar(im, ax=ax) ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=list(class_indict.values()), yticklabels=list(class_indict.values()), title='Confusion matrix', ylabel='True label', xlabel='Predicted label') plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") fmt = 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() plt.show() ``` 这里使用了 `sklearn.metrics` 中的 `confusion_matrix` 函数进行混淆矩阵的计算。然后使用 `matplotlib` 绘制混淆矩阵图像。

相关推荐

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

matlab基于不确定性可达性优化的自主鲁棒操作.zip

matlab基于不确定性可达性优化的自主鲁棒操作.zip
recommend-type

pytest-2.8.0.zip

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

信息安全课程实验C++实现DES等算法源代码

信息安全课程实验C++实现DES等算法源代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依