将最大池化替换为平均池化有什么作用?
时间: 2024-01-24 12:01:48 浏览: 99
将最大池化替换为平均池化有以下作用:
1. 平均池化可以保留更多的信息。相对于最大池化,平均池化会将所有特征值的平均值作为输出,可以避免最大值过度占据特征信息的情况。
2. 平均池化可以减轻过拟合。最大池化会使得网络更加倾向于关注特定的特征,而平均池化则可以减轻这种倾向,从而减轻网络的过拟合问题。
3. 平均池化可以减小特征图的尺寸。相对于最大池化,平均池化会将特征图的尺寸减小得更加平滑,不会出现明显的特征突出,因此可以更好地适应不同尺度的特征提取。
相关问题
基于tensorflow2.5,将Channel Attention部分中的全局平均池化替换为L2池化,对于Spatial Attention,将max pooling和average pooling分别替换为随机池化和L2池化,二者结合形成新的CBAM模块,并给出使用示例
首先,我们需要定义L2池化和随机池化的函数:
```python
import tensorflow as tf
def l2_pool(x, pool_size):
return tf.math.sqrt(tf.nn.avg_pool(tf.square(x), pool_size, strides=1, padding='SAME'))
def rand_pool(x, pool_size):
random_mat = tf.random.uniform(x.shape[:-1], dtype=tf.float32)
threshold = tf.math.reduce_max(random_mat) * 0.5
return tf.where(random_mat > threshold, tf.nn.avg_pool(x, pool_size, strides=1, padding='SAME'), tf.nn.max_pool(x, pool_size, strides=1, padding='SAME'))
```
然后,我们可以定义新的CBAM模块:
```python
import tensorflow as tf
class NewCBAM(tf.keras.layers.Layer):
def __init__(self, reduction_ratio=16):
super(NewCBAM, self).__init__()
self.reduction_ratio = reduction_ratio
self.gamma = tf.Variable(0.0, trainable=True)
# Channel Attention
self.avg_pool = tf.keras.layers.GlobalAveragePooling2D()
self.max_pool = tf.keras.layers.GlobalMaxPooling2D()
self.l2_pool = tf.keras.layers.Lambda(lambda x: l2_pool(x, pool_size=(1,1)))
self.dense1 = tf.keras.layers.Dense(units=tf.keras.backend.int_shape(x)[-1]//self.reduction_ratio, activation='relu')
self.dense2 = tf.keras.layers.Dense(units=tf.keras.backend.int_shape(x)[-1], activation='sigmoid')
# Spatial Attention
self.rand_pool = tf.keras.layers.Lambda(lambda x: rand_pool(x, pool_size=(3,3)))
self.l2_pool2 = tf.keras.layers.Lambda(lambda x: l2_pool(x, pool_size=(3,3)))
self.concat1 = tf.keras.layers.Concatenate(axis=-1)
self.conv1 = tf.keras.layers.Conv2D(filters=1, kernel_size=1, activation='sigmoid')
def call(self, x):
# Channel Attention
avg_pool = self.avg_pool(x)
max_pool = self.max_pool(x)
l2_pool = self.l2_pool(x)
concat = tf.concat([avg_pool, max_pool, l2_pool], axis=-1)
dense1 = self.dense1(concat)
dense2 = self.dense2(dense1)
channel_attention = tf.reshape(dense2, shape=(-1,1,1,tf.keras.backend.int_shape(x)[-1]))
channel_attention = tf.math.multiply(x, channel_attention)
# Spatial Attention
rand_pool = self.rand_pool(x)
l2_pool2 = self.l2_pool2(x)
concat2 = tf.concat([rand_pool, l2_pool2], axis=-1)
conv1 = self.conv1(concat2)
spatial_attention = tf.math.multiply(x, conv1)
# Fusion
fusion = tf.math.add(channel_attention, spatial_attention)
return tf.math.add(tf.math.multiply(x, 1-self.gamma), tf.math.multiply(fusion, self.gamma))
```
最后,我们可以使用新的CBAM模块:
```python
import tensorflow as tf
inputs = tf.keras.layers.Input(shape=(224, 224, 3))
x = tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding='SAME')(inputs)
x = NewCBAM()(x)
x = tf.keras.layers.Conv2D(filters=128, kernel_size=3, padding='SAME')(x)
x = NewCBAM()(x)
x = tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='SAME')(x)
x = NewCBAM()(x)
x = tf.keras.layers.Conv2D(filters=512, kernel_size=3, padding='SAME')(x)
x = NewCBAM()(x)
x = tf.keras.layers.Conv2D(filters=1024, kernel_size=3, padding='SAME')(x)
x = NewCBAM()(x)
outputs = tf.keras.layers.GlobalAveragePooling2D()(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
```
基于tensorflow2.5,使用随机池化和L2池化替换CBAM注意力机制模块里的池化操作,并给出使用示例
CBAM注意力机制模块中的池化操作包括全局最大池化和全局平均池化。我们可以使用随机池化和L2池化来替换这些操作。
随机池化是一种随机抽样的池化方法,可以在一定程度上增加模型的鲁棒性和泛化能力。L2池化可以有效地压缩信息,减少模型的计算复杂度和参数数量。
下面是使用随机池化和L2池化替换CBAM注意力机制模块里的池化操作的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Dense, GlobalAveragePooling2D, GlobalMaxPooling2D, Reshape, Multiply, Add, Activation, Lambda
from tensorflow.keras import backend as K
class CBAM(tf.keras.Model):
def __init__(self, reduction_ratio=0.5):
super().__init__()
self.reduction_ratio = reduction_ratio
def build(self, input_shape):
self.channel_axis = -1
self.max_pool = tf.keras.layers.Lambda(lambda x: tf.reduce_max(x, axis=[1,2], keepdims=True))
self.avg_pool = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=[1,2], keepdims=True))
self.shared_layer_one = tf.keras.layers.Dense(units=int(input_shape[self.channel_axis])//self.reduction_ratio, activation='relu', kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
self.shared_layer_two = tf.keras.layers.Dense(units=int(input_shape[self.channel_axis]), kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
self.sigmoid_gamma = tf.keras.layers.Activation('sigmoid')
def call(self, inputs):
max_pool = self.max_pool(inputs)
avg_pool = self.avg_pool(inputs)
gamma = self.shared_layer_two(self.shared_layer_one(tf.concat([max_pool, avg_pool], axis=self.channel_axis)))
gamma = self.sigmoid_gamma(gamma)
return inputs * gamma
```
使用随机池化和L2池化替换CBAM注意力机制模块中的池化操作的代码如下:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, Dense, GlobalAveragePooling2D, GlobalMaxPooling2D, Reshape, Multiply, Add, Activation, Lambda
from tensorflow.keras import backend as K
class CBAM(tf.keras.Model):
def __init__(self, reduction_ratio=0.5):
super().__init__()
self.reduction_ratio = reduction_ratio
def build(self, input_shape):
self.channel_axis = -1
self.random_pool = tf.keras.layers.Lambda(lambda x: tf.math.reduce_mean(tf.random.shuffle(x), axis=[1,2], keepdims=True))
self.l2_pool = tf.keras.layers.Lambda(lambda x: tf.math.sqrt(tf.math.reduce_mean(tf.math.square(x), axis=[1,2], keepdims=True)))
self.shared_layer_one = tf.keras.layers.Dense(units=int(input_shape[self.channel_axis])//self.reduction_ratio, activation='relu', kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
self.shared_layer_two = tf.keras.layers.Dense(units=int(input_shape[self.channel_axis]), kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')
self.sigmoid_gamma = tf.keras.layers.Activation('sigmoid')
def call(self, inputs):
random_pool = self.random_pool(inputs)
l2_pool = self.l2_pool(inputs)
gamma = self.shared_layer_two(self.shared_layer_one(tf.concat([random_pool, l2_pool], axis=self.channel_axis)))
gamma = self.sigmoid_gamma(gamma)
return inputs * gamma
```
使用示例:
```python
import tensorflow as tf
from cbam import CBAM
inputs = tf.keras.layers.Input(shape=(224,224,3))
x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(inputs)
x = CBAM()(x)
x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation='relu')(x)
x = CBAM()(x)
x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')(x)
x = CBAM()(x)
x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation='relu')(x)
x = CBAM()(x)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
outputs = tf.keras.layers.Dense(units=10, activation='softmax')(x)
model = tf.keras.Model(inputs, outputs)
model.summary()
```
阅读全文