''''划分线下数据集''' # 划分区间 dataset_test = off_test#dataset3的数据集范围即为要预测的7月份的线下测试集 feature_test = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset_validate = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature_validate = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset_train = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature_train = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))]出现报错'DataFrame' object has no attribute 'date'怎么办
时间: 2024-02-01 11:02:34 浏览: 69
这个报错是因为 `off_train` 这个 DataFrame 中不存在名为 `date` 的列,导致代码无法运行。建议您检查一下 `off_train` 中的列名称,确保 `date` 这一列名字是正确的。如果列名不正确,可以将代码中的 `date` 换成正确的列名。如果确实没有 `date` 这一列,就需要先对数据进行预处理,添加或修改相应的列。
相关问题
# 划分区间 dataset_test = off_test#dataset3的数据集范围即为要预测的7月份的线下测试集 feature_test = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset_validate = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature_validate = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset_train = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature_train = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))]出现报错# 划分区间 dataset_test = off_test#dataset3的数据集范围即为要预测的7月份的线下测试集 feature_test = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset_validate = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature_validate = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset_train = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature_train = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))]怎么解决
您提供的代码没有明确的报错信息,不过我猜测可能是因为变量名错误导致的。在代码中,`off_train` 和 `off_test` 可能是您之前定义的变量。如果您没有定义这些变量,就会出现错误。请确保您在运行这段代码之前已经定义了这些变量,并且变量名与您的代码一致。另外,请注意检查代码中的括号、引号等是否匹配。如果问题仍然存在,请提供完整的报错信息。
# 划分区间 # 训练集历史区间、中间区间、标签区间 train_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/2', periods=60))] # [20160302,20160501) train_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/5/1', periods=15))] # [20160501,20160516) train_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/5/16', periods=31))] # [20160516,20160616) # 验证集历史区间、中间区间、标签区间 validate_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/1/16', periods=60))] # [20160116,20160316) validate_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/3/16', periods=15))] # [20160316,20160331) validate_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/31', periods=31))] # [20160331,20160501) # 测试集历史区间、中间区间、标签区间 test_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616) test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701) test_label_field = off_test.copy() # [20160701,20160801)将其改为一个函数
可以将这段代码封装成一个函数,以便在需要时可以直接调用。以下是一个可能的实现:
```python
import pandas as pd
def split_dataset(off_train, off_test):
# 划分区间
# 训练集历史区间、中间区间、标签区间
train_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/2', periods=60))] # [20160302,20160501)
train_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/5/1', periods=15))] # [20160501,20160516)
train_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/5/16', periods=31))] # [20160516,20160616)
# 验证集历史区间、中间区间、标签区间
validate_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/1/16', periods=60))] # [20160116,20160316)
validate_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/3/16', periods=15))] # [20160316,20160331)
validate_label_field = off_train[off_train['date_received'].isin(pd.date_range('2016/3/31', periods=31))] # [20160331,20160501)
# 测试集历史区间、中间区间、标签区间
test_history_field = off_train[off_train['date_received'].isin(pd.date_range('2016/4/17', periods=60))] # [20160417,20160616)
test_middle_field = off_train[off_train['date'].isin(pd.date_range('2016/6/16', periods=15))] # [20160616,20160701)
test_label_field = off_test.copy() # [20160701,20160801)
return (train_history_field, train_middle_field, train_label_field,
validate_history_field, validate_middle_field, validate_label_field,
test_history_field, test_middle_field, test_label_field)
```
调用该函数时,需要传入 `off_train` 和 `off_test` 两个数据集作为参数,函数将返回九个数据集,分别对应训练集、验证集和测试集的历史区间、中间区间和标签区间。
阅读全文