sklearn实现人脸识别的flda特征提取
时间: 2023-07-12 13:17:42 浏览: 92
要使用sklearn实现人脸识别的flda特征提取,需要先进行以下步骤:
1. 导入所需的库和数据集
```
import numpy as np
from sklearn.datasets import fetch_lfw_people
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
```
2. 加载数据集
```
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
```
3. 将数据集拆分为训练集和测试集
```
X_train, X_test, y_train, y_test = train_test_split(lfw_people.data, lfw_people.target, test_size=0.25, random_state=42)
```
4. 使用flda进行特征提取
```
lda = LinearDiscriminantAnalysis(n_components=100)
X_train_lda = lda.fit_transform(X_train, y_train)
X_test_lda = lda.transform(X_test)
```
5. 使用提取后的特征进行分类
```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_lda, y_train)
print("Accuracy:", knn.score(X_test_lda, y_test))
```
这样就可以使用sklearn实现人脸识别的flda特征提取了。
阅读全文