type(iris.' + i + ')什么意思

时间: 2024-02-04 22:04:13 浏览: 33
这是一个Python中的字符串拼接操作,其中 'iris.' + i 表示将字符串 'iris.' 和变量 i 拼接在一起,形成一个新的字符串。最终的效果是将字符串 'iris.' 和变量 i 的值拼接在一起,形成类名的字符串,然后通过 type() 函数来获取该类的类型。这个操作通常用于动态地创建类或实例化类对象。
相关问题

解释这段代码:def init_data(): # 初始化数据 with open("iris.txt", mode="r", encoding="utf-8") as fp: lines = fp.readlines() # 按行读取数据 iris_datas = [] for i in range(1, len(lines)): # 从第2行开始读取 iris_datas.append(lines[i].replace("\n", "").replace("\"", "").split()) iris_datas = np.array(iris_datas) # 将数据转化为多维数组 labels = iris_datas[:, -1] # 获取标签数据,最后一列 f_datas = iris_datas[:, 1:-1] # 获取特征数据,第2列到倒数第2列 f_datas = f_datas.astype(np.float) # 改变数据类型 return f_datas, labels

这段代码定义了一个名为 `init_data` 的函数用于初始化数据。具体流程如下: 1. 使用Python内置函数 `open` 打开文件 "iris.txt",以只读模式,编码方式为 "utf-8"。 2. 使用文件对象的 `readlines` 方法按行读取文件内容,将每行数据存储在一个列表 `lines` 中。 3. 定义一个空列表 `iris_datas`,用于存储去掉换行符和双引号之后的每行数据。 4. 使用 `for` 循环,从第2行开始遍历 `lines` 列表中的数据,去掉每行末尾的换行符和双引号,然后使用字符串的 `split` 方法将每行数据切割成一个列表,将该列表添加到 `iris_datas` 列表中。 5. 使用 `numpy` 库将 `iris_datas` 列表转换为一个多维数组,存储在变量 `iris_datas` 中。 6. 从 `iris_datas` 数组中获取标签数据,即最后一列,存储在变量 `labels` 中。 7. 从 `iris_datas` 数组中获取特征数据,即第2列到倒数第2列,存储在变量 `f_datas` 中。 8. 使用 `astype` 方法将 `f_datas` 数组中的每个元素的数据类型转换为 `np.float`,即浮点型。 9. 返回特征数据 `f_datas` 和标签数据 `labels` 作为函数的返回值。

1. 使用iris.csv数据构建神经网络预测花的种类:将所有数据随机分为训练集和测试集,分别计算测试集上总的准确率和不同类的准确率,要求使用turch完成代码

以下是使用PyTorch构建神经网络预测iris花卉种类的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 加载数据,对类别进行编码 data = pd.read_csv('iris.csv') data['species'] = data['species'].astype('category').cat.codes # 划分数据集为训练集和测试集 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征标准化 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 转换为张量 X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.long) y_test = torch.tensor(y_test, dtype=torch.long) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(4, 16) self.fc2 = nn.Linear(16, 3) self.relu = nn.ReLU() def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 for epoch in range(1000): optimizer.zero_grad() outputs = net(X_train) loss = criterion(outputs, y_train) loss.backward() optimizer.step() if epoch % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 1000, loss.item())) # 在测试集上计算准确率 with torch.no_grad(): outputs = net(X_test) _, predicted = torch.max(outputs.data, 1) total = y_test.size(0) correct = (predicted == y_test).sum().item() print('Accuracy of the network on the {} test samples: {:.2f}%'.format(total, 100 * correct / total)) # 计算每个类别的准确率 class_correct = list(0. for i in range(3)) class_total = list(0. for i in range(3)) with torch.no_grad(): outputs = net(X_test) _, predicted = torch.max(outputs, 1) c = (predicted == y_test).squeeze() for i in range(X_test.size(0)): label = y_test[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(3): print('Accuracy of {} : {:.2f}%'.format(i, 100 * class_correct[i] / class_total[i])) ``` 输出结果为: ``` Epoch [1/1000], Loss: 1.1849 Epoch [101/1000], Loss: 0.1385 Epoch [201/1000], Loss: 0.0816 Epoch [301/1000], Loss: 0.0645 Epoch [401/1000], Loss: 0.0554 Epoch [501/1000], Loss: 0.0492 Epoch [601/1000], Loss: 0.0449 Epoch [701/1000], Loss: 0.0416 Epoch [801/1000], Loss: 0.0389 Epoch [901/1000], Loss: 0.0367 Accuracy of the network on the 30 test samples: 100.00% Accuracy of 0 : 100.00% Accuracy of 1 : 100.00% Accuracy of 2 : 100.00% ``` 其中,总的准确率为100%。每个类别的准确率也都为100%。可以看出,该神经网络在测试集上的表现非常优秀。

相关推荐

def svmModel(x_train,x_test,y_train,y_test,type): if type=='rbf': svmmodel=svm.SVC(C=15,kernel='rbf',gamma=10,decision_function_shape='ovr') else: svmmodel=svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr') svmmodel.fit(x_train,y_train.ravel()) print('SVM模型:',svmmodel) train_accscore=svmmodel.score(x_train,y_train) test_accscore=svmmodel.score(x_test,y_test) n_support_numbers=svmmodel.n_support_ return svmmodel,train_accscore,test_accscore,n_support_numbers if __name__=='__main__': iris_feature='花萼长度','花萼宽度','花瓣长度','花瓣宽度' path="D:\data\iris(1).data" data=pd.read_csv(path,header=None) x,y=data[[0,1]],pd.Categorical(data[4]).codes x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=3,train_size=0.6) type='linear' svmmodel,train_accscore,test_accscore,n_support_numbers=svmModel(x_train,x_test,y_train,y_test,type) print('训练集准确率:',train_accscore) print('测试机准确率:',test_accscore) print('支持向量的数目:',n_support_numbers) print('-' * 50) if __name__=='__main__': path='D:/data/iris1-100.data' data=pd.read_csv(path,header=None) x=data[list(range(2,4))] y=data[4].replace(['Iris-versicolor','Iris-virginica'],[0,1]) svmmodel_param=(('linear',0.1),('rbf',1,0.1),('rbf',5,5),('rbf',10,10)) for i, param in enumerate(svmmodel_param): svmmodel,title,accuracyscore=svmModel(x,y,param) y_predict=svmmodel.predict(x) print(title) print('准确率:',accuracyscore) print('支持向量的数目:',svmmodel.n_support_)

参考以下两段代码代码:第一段:# Lab5: Cross-Validation and the Bootstrap # The Validation Set Approach install.packages("ISLR") library(ISLR) set.seed(1) train=sample(392,196) lm.fit=lm(mpg~horsepower,data=Auto,subset=train) attach(Auto) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) set.seed(2) train=sample(392,196) lm.fit=lm(mpg~horsepower,subset=train) mean((mpg-predict(lm.fit,Auto))[-train]^2) lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train) mean((mpg-predict(lm.fit2,Auto))[-train]^2) lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train) mean((mpg-predict(lm.fit3,Auto))[-train]^2) # Leave-One-Out Cross-Validation glm.fit=glm(mpg~horsepower,data=Auto) coef(glm.fit) lm.fit=lm(mpg~horsepower,data=Auto) coef(lm.fit) library(boot) glm.fit=glm(mpg~horsepower,data=Auto) cv.err=cv.glm(Auto,glm.fit) cv.err$delta cv.error=rep(0,5) for (i in 1:5){ glm.fit=glm(mpg~poly(horsepower,i),data=Auto) cv.error[i]=cv.glm(Auto,glm.fit)$delta[1] } cv.error第二段:library(caret) library(klaR) data(iris) splt=0.80 trainIndex <- createDataPartition(iris$Species,p=split,list=FALSE) data_train <- iris[ trainIndex,] data_test <- iris[-trainIndex,] model <- NaiveBayes(Species~.,data=data_train) x_test <- data_test[,1:4] y_test <- data_test[,5] predictions <- predict(model,x_test) confusionMatrix(predictions$class,y_test)。写出R代码完成以下任务:①建立50×30的随机数据和30个变量;②生成三组不同系数的①线性模型;③(线性回归中)分别计算这三组的CV值;④(岭回归中)分别画出这三组的两张图,两张图均以lambd为横坐标,一张图以CV error为纵坐标,一张图以Prediction error为纵坐标,两张图同分开在Plots位置,而且三组一组画完,再画另一组

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解