r语言中对xgboost模型做交叉验证和网格搜索
时间: 2023-09-24 12:02:59 浏览: 842
在R语言中,我们可以使用`caret`包来进行交叉验证和网格搜索。具体步骤如下:
1. 载入`caret`和`xgboost`包
```
library(caret)
library(xgboost)
```
2. 准备数据集
```
data(iris)
x <- iris[,1:4]
y <- iris[,5]
```
3. 定义模型和参数网格
比如,我们使用xgboost模型,并定义一些可能的参数组合:
```
model <- train(x, y, method = "xgbTree", tuneLength = 3,
preProc = c("center", "scale"),
tuneGrid = expand.grid(nrounds = c(10, 20, 30),
max_depth = c(2, 4, 6)))
```
其中,`method`参数指定了使用的模型类型,`tuneLength`参数指定了交叉验证的折数,`preProc`参数指定了预处理方式,`tuneGrid`参数指定了参数网格。
4. 进行交叉验证和网格搜索
```
fit <- train(x, y, method = "xgbTree", trControl = trainControl(method = "cv", number = 5),
tuneGrid = expand.grid(nrounds = c(10, 20, 30),
max_depth = c(2, 4, 6)),
preProc = c("center", "scale"))
```
其中,`trControl`参数指定了交叉验证的方式,`tuneGrid`参数指定了参数网格。
5. 查看最佳参数和模型性能
```
print(fit)
```
输出类似于:
```
eXtreme Gradient Boosting
150 samples
4 predictor
3 classes: 'setosa', 'versicolor', 'virginica'
Pre-processing: centered (4), scaled (4)
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 120, 120, 120, 120, 120
Resampling results across tuning parameters:
nrounds max_depth Accuracy Kappa
10 2 0.9466667 0.9100000
10 4 0.9466667 0.9100000
10 6 0.9466667 0.9100000
20 2 0.9533333 0.9200000
20 4 0.9533333 0.9200000
20 6 0.9533333 0.9200000
30 2 0.9600000 0.9300000
30 4 0.9600000 0.9300000
30 6 0.9600000 0.9300000
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were nrounds = 30 and max_depth = 2.
```
可以看到,最佳参数是`nrounds = 30`和`max_depth = 2`,模型的准确率为0.96。
阅读全文