安德森加速算法图像处理的程序

时间: 2023-10-12 14:08:17 浏览: 49
安德森加速算法是一种用于求解线性方程组的迭代算法,它可以加快矩阵求解的速度。在图像处理中,安德森加速算法可以用于图像去噪、图像恢复等方面。 以下是一个使用安德森加速算法进行图像去噪的程序示例: ```python import numpy as np from skimage import io, color from scipy.sparse.linalg import LinearOperator from scipy.sparse.linalg import cg # 加载图像并转为灰度图 img = io.imread('image.jpg') gray = color.rgb2gray(img) # 添加高斯噪声 noisy = gray + 0.1 * np.random.randn(*gray.shape) # 构建线性方程组 n = gray.size A = LinearOperator((n, n), matvec=lambda x: np.ravel(np.fft.ifft2(np.fft.fft2(np.reshape(x, gray.shape)) * H))) b = np.ravel(np.fft.ifft2(np.fft.fft2(noisy) * H)) # 安德森加速算法求解线性方程组 x0 = np.zeros_like(b) x, info = cg(A, b, x0=x0, tol=1e-5, maxiter=100) # 将结果转为图像格式并显示 result = np.reshape(x, gray.shape) io.imshow(result) io.show() ``` 其中 `H` 是一个频域滤波器,可以根据实际需求选择不同的滤波器,比如高斯滤波器、中值滤波器等。程序中使用了 `scipy.sparse.linalg.cg` 函数实现安德森加速算法的迭代求解。

相关推荐

最新推荐

recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...
recommend-type

基于SpringBoot框架的中小企业完全开源的ERP.zip

基于springboot的java毕业&课程设计
recommend-type

基于Springboot的健身信息系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于vue + springboot的学生成绩管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于卷积神经网络的语义分割

基于卷积神经网络的语义分割卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。