怎么用随机森林十折交叉验证后输出最优超参数再用测试集测试python
时间: 2024-05-05 15:20:20 浏览: 110
可以使用sklearn库中的RandomizedSearchCV函数来进行随机森林的超参数优化和交叉验证。具体步骤如下:
1. 导入sklearn库:
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
```
2. 定义随机森林分类器:
```python
rf = RandomForestClassifier()
```
3. 定义超参数的范围:
```python
param_distribs = {
'n_estimators': randint(low=1, high=200),
'max_features': randint(low=1, high=8),
}
```
4. 使用RandomizedSearchCV函数进行十折交叉验证和超参数优化:
```python
rnd_search = RandomizedSearchCV(rf, param_distributions=param_distribs,
n_iter=10, cv=10, scoring='accuracy', random_state=42)
rnd_search.fit(X_train, y_train)
```
5. 输出最优超参数:
```python
print("Best hyperparameters: ", rnd_search.best_params_)
```
6. 使用测试集测试模型:
```python
from sklearn.metrics import accuracy_score
y_pred = rnd_search.predict(X_test)
accuracy_score(y_test, y_pred)
```
注意,以上代码仅为示范,实际上要根据具体的数据集和问题进行适当的修改和调整。
阅读全文