对某列属性的空缺值进行整体填充 填充为该列的平均值 python代码
时间: 2024-02-16 22:03:19 浏览: 77
可以使用 `fillna()` 函数来对 DataFrame 数据中某一列的空缺值进行整体填充。以下是一个示例代码:
```python
import pandas as pd
# 创建一个包含空缺值的 DataFrame
data = {'name': ['Alice', 'Bob', 'Charlie', 'David', 'Emily'],
'age': [25, None, 27, None, 30],
'gender': ['F', 'M', 'M', 'M', 'F']}
df = pd.DataFrame(data)
# 计算 'age' 属性的平均值
mean_age = df['age'].mean()
# 使用平均值填充 'age' 属性的空缺值
df['age'].fillna(mean_age, inplace=True)
# 打印填充后的 DataFrame
print(df)
```
运行上面的代码后,将输出以下结果:
```
name age gender
0 Alice 25.0 F
1 Bob 26.0 M
2 Charlie 27.0 M
3 David 26.0 M
4 Emily 30.0 F
```
其中,`fillna()` 函数将会将指定列中的所有空缺值填充为指定的值,并返回一个新的 DataFrame。如果需要在原有 DataFrame 上直接填充,可以使用 `inplace=True` 参数。例如:
```python
# 直接在原有 DataFrame 上填充 'age' 属性的空缺值
df['age'].fillna(mean_age, inplace=True)
# 打印填充后的 DataFrame
print(df)
```
注意,如果需要对多个属性进行填充,可以使用 `fillna()` 函数的第一个参数指定填充值的字典。例如:
```python
# 使用字典指定多个属性的填充值
fill_values = {'age': mean_age, 'gender': 'unknown'}
df.fillna(fill_values, inplace=True)
# 打印填充后的 DataFrame
print(df)
```
其中,`fillna()` 函数的第一个参数是一个字典,其中每个键表示要填充的属性名,每个值表示该属性的填充值。该方法也可以用于对整个 DataFrame 进行填充。
阅读全文
相关推荐
















