android 使用摄像头测量心率
时间: 2023-07-11 20:51:41 浏览: 87
Android通过摄像头检测心率
在Android上使用摄像头测量心率需要使用图像处理技术。这里提供一种基于颜色变化的心率测量方法,步骤如下:
1. 打开摄像头并实时获取预览图像;
2. 将预览图像转换为RGB颜色空间;
3. 将RGB颜色空间转换为YCrCb颜色空间,并提取出亮度分量Y;
4. 对亮度分量Y进行高斯滤波,去除图像中的噪声;
5. 计算每一帧图像中的亮度分量Y的平均值,并将其保存为一个时间序列;
6. 对时间序列进行傅里叶变换,得到频谱图;
7. 从频谱图中找到最大的峰值,对应的频率就是心率。
以下是一个基于这种方法的示例代码:
```java
public class HeartRateMonitorActivity extends AppCompatActivity implements Camera.PreviewCallback {
private Camera camera;
private int width, height;
private int[] pixels;
private int[] grayValues;
private double[] yValues;
private int samplingRate = 30;
private int[] heartRates;
private TextView tvHeartRate;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_heart_rate_monitor);
tvHeartRate = findViewById(R.id.tv_heart_rate);
// 打开摄像头并设置预览回调
camera = Camera.open();
Camera.Parameters parameters = camera.getParameters();
List<Camera.Size> sizes = parameters.getSupportedPreviewSizes();
Camera.Size size = sizes.get(0);
width = size.width;
height = size.height;
pixels = new int[width * height];
grayValues = new int[width * height];
yValues = new double[width * height];
camera.setPreviewCallback(this);
camera.setDisplayOrientation(90);
camera.startPreview();
}
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
// 将预览图像转换为RGB颜色空间
YuvImage yuvImage = new YuvImage(data, ImageFormat.NV21, width, height, null);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
yuvImage.compressToJpeg(new Rect(0, 0, width, height), 100, baos);
byte[] imageData = baos.toByteArray();
Bitmap bitmap = BitmapFactory.decodeByteArray(imageData, 0, imageData.length);
bitmap.getPixels(pixels, 0, width, 0, 0, width, height);
for (int i = 0; i < pixels.length; i++) {
int r = (pixels[i] >> 16) & 0xff;
int g = (pixels[i] >> 8) & 0xff;
int b = pixels[i] & 0xff;
grayValues[i] = (int) (0.299 * r + 0.587 * g + 0.114 * b);
}
// 将RGB颜色空间转换为YCrCb颜色空间,并提取出亮度分量Y
for (int i = 0; i < grayValues.length; i++) {
int r = (pixels[i] >> 16) & 0xff;
int g = (pixels[i] >> 8) & 0xff;
int b = pixels[i] & 0xff;
yValues[i] = (0.299 * r + 0.587 * g + 0.114 * b) / 255.0;
}
// 对亮度分量Y进行高斯滤波
yValues = gaussianFilter(yValues, 5);
// 计算每一帧图像中的亮度分量Y的平均值,并将其保存为一个时间序列
double yMean = 0;
for (int i = 0; i < yValues.length; i++) {
yMean += yValues[i];
}
yMean /= yValues.length;
double[] timeSeries = new double[samplingRate];
for (int i = 0; i < samplingRate; i++) {
timeSeries[i] = yMean;
}
// 对时间序列进行傅里叶变换,得到频谱图
double[] spectrum = FFT.fft(timeSeries);
// 从频谱图中找到最大的峰值,对应的频率就是心率
int heartRate = findPeak(spectrum, 0.8, samplingRate);
if (heartRate > 0) {
heartRates[heartRate % heartRates.length] = heartRate;
int averageHeartRate = 0;
for (int i = 0; i < heartRates.length; i++) {
averageHeartRate += heartRates[i];
}
averageHeartRate /= heartRates.length;
tvHeartRate.setText("Heart rate: " + averageHeartRate);
}
}
@Override
protected void onDestroy() {
super.onDestroy();
camera.setPreviewCallback(null);
camera.stopPreview();
camera.release();
}
// 高斯滤波
private double[] gaussianFilter(double[] data, int windowSize) {
double[] result = new double[data.length];
double[] window = new double[windowSize];
double sigma = windowSize / 6.0;
for (int i = 0; i < windowSize; i++) {
window[i] = Math.exp(-(i - windowSize / 2) * (i - windowSize / 2) / (2 * sigma * sigma));
}
double sum = 0;
for (int i = 0; i < windowSize; i++) {
sum += window[i];
}
for (int i = 0; i < data.length; i++) {
double weightedSum = 0;
for (int j = 0; j < windowSize; j++) {
int index = i - windowSize / 2 + j;
if (index < 0) {
index = 0;
}
if (index >= data.length) {
index = data.length - 1;
}
weightedSum += window[j] * data[index];
}
result[i] = weightedSum / sum;
}
return result;
}
// 从频谱图中找到最大的峰值,对应的频率就是心率
private int findPeak(double[] spectrum, double threshold, int samplingRate) {
int maxIndex = -1;
double maxValue = 0;
for (int i = 0; i < spectrum.length / 2; i++) {
if (spectrum[i] > maxValue) {
maxValue = spectrum[i];
maxIndex = i;
}
}
if (maxValue > threshold * spectrum[0]) {
return maxIndex * samplingRate / spectrum.length;
} else {
return -1;
}
}
}
```
这种方法的精度不如专业的心率测量设备,但可以提供一个相对准确的心率测量结果。
阅读全文