用python画出由UE端发起的释放EPS承载的流程图,在图中展示信令Attach success/connection success等信令

时间: 2023-06-17 07:05:10 浏览: 47
为了画出流程图,我们可以使用Python中的工具包`graphviz`。首先需要安装`graphviz`,使用以下命令: ``` pip install graphviz ``` 接下来,我们可以使用以下代码来画出由UE端发起的释放EPS承载的流程图,并在图中展示信令Attach success/connection success等信令: ```python from graphviz import Digraph # 创建Digraph对象 dot = Digraph(comment='EPS Release Procedure') # 添加节点 dot.node('UE', 'UE') dot.node('eNodeB', 'eNodeB') dot.node('MME', 'MME') dot.node('SGW', 'SGW') dot.node('PGW', 'PGW') # 添加边 dot.edge('UE', 'eNodeB', label='Attach Request') dot.edge('eNodeB', 'MME', label='S1AP Initial UE Message') dot.edge('MME', 'SGW', label='Create Session Request') dot.edge('SGW', 'PGW', label='Create Session Request') dot.edge('PGW', 'SGW', label='Create Session Response') dot.edge('SGW', 'MME', label='Create Session Response') dot.edge('MME', 'eNodeB', label='S1AP Initial Context Setup Request') dot.edge('eNodeB', 'UE', label='Attach Accept') dot.edge('UE', 'eNodeB', label='Attach Complete') dot.edge('eNodeB', 'MME', label='S1AP UE Context Release Request') dot.edge('MME', 'SGW', label='Delete Session Request') dot.edge('SGW', 'PGW', label='Delete Session Request') dot.edge('PGW', 'SGW', label='Delete Session Response') dot.edge('SGW', 'MME', label='Delete Session Response') dot.edge('MME', 'eNodeB', label='S1AP UE Context Release Command') dot.edge('eNodeB', 'UE', label='Detach Request') dot.edge('UE', 'eNodeB', label='Detach Accept') # 输出图像 dot.render('eps_release.gv', view=True) ``` 这段代码会生成一个名为`eps_release.gv`的文件,可以使用Graphviz软件打开该文件来查看流程图。在流程图中,我们使用了`label`属性来展示信令Attach Request、S1AP Initial UE Message、Create Session Request等。

相关推荐

!pip install matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Rectangle fig, ax = plt.subplots(figsize=(8, 6)) ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.axis('off') # UE端发起释放EPS承载 rect_ue = Rectangle((1, 9), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_ue) ax.text(1.5, 9.5, 'UE\nRelease\nEPS\nBearer', ha='center', va='center') # RRC连接释放 rect_rrc = Rectangle((4, 9), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_rrc) ax.text(4.5, 9.5, 'RRC\nConnection\nRelease', ha='center', va='center') # Detach请求 rect_detach = Rectangle((7, 9), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_detach) ax.text(8, 9.5, 'Detach\nRequest', ha='center', va='center') # 信令Attach success/connection success等信令 rect_attach = Rectangle((1, 5), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_attach) ax.text(1.5, 5.5, 'Attach\nSuccess', ha='center', va='center') rect_conn = Rectangle((4, 5), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_conn) ax.text(4.5, 5.5, 'Connection\nSuccess', ha='center', va='center') # 释放EPS承载完成 rect_done = Rectangle((7, 5), 2, 1, linewidth=1, edgecolor='black', facecolor='white') ax.add_patch(rect_done) ax.text(8, 5.5, 'Release\nDone', ha='center', va='center') # UE端发起释放EPS承载 -> RRC连接释放 ax.annotate('', xy=(3, 9.5), xytext=(4, 9.5), arrowprops=dict(arrowstyle='->')) # RRC连接释放 -> Detach请求 ax.annotate('', xy=(6, 9.5), xytext=(7, 9.5), arrowprops=dict(arrowstyle='->')) # Detach请求 -> 信令Attach success/connection success等信令 ax.annotate('', xy=(1, 8), xytext=(1, 5.5), arrowprops=dict(arrowstyle='->')) ax.annotate('', xy=(4, 8), xytext=(4, 5.5), arrowprops=dict(arrowstyle='->')) # 信令Attach success/connection success等信令 -> 释放EPS承载完成 ax.annotate('', xy=(3, 5.5), xytext=(7, 5.5), arrowprops=dict(arrowstyle='->')) plt.show(),这段代码画出来的图比例不太对,请调整

最新推荐

recommend-type

5G+NSA切换信令流程(附图).docx

5G+NSA切换信令流程(附图).docx5G+NSA切换信令流程(附图).docx5G+NSA切换信令流程(附图).docx5G+NSA切换信令流程(附图).docx
recommend-type

5GNSA接入信令流程改进篇.pdf

5GNSA接入信令流程改进篇.pdf5GNSA接入信令流程改进篇.pdf5GNSA接入信令流程改进篇.pdf5GNSA接入信令流程改进篇.pdf5GNSA接入信令流程改进篇.pdf
recommend-type

CSFB信令流程,讲解的非常详细

在 CSFB 信令流程中,移动性管理是指 UE(User Equipment,用户设备)在 LTE 网络中的移动性管理过程。在这个过程中,UE 需要与网络进行交互,以便实现语音业务的切换。 1.1 联合附着流程 在这个过程中,UE 需要与...
recommend-type

5GNR高层信令流程.pdf

5GNR高层信令流程.pdf 5GNR高层信令流程.pdf 5GNR高层信令流程.pdf 5GNR高层信令流程.pdf 5GNR高层信令流程.pdf
recommend-type

5G基本信令详解(深入浅出详细整理汇篇版).pptx

5G基本信令详解5G相比4G的新特性无线网络架构;NR高层相对于LTE高层的主要变化;5G接入网架构;4G-5G高层协议规范框架对比;信令承载SRB;UE状态;新UE状态特点;UE RRC状态;RRC状态;Connection Control概述;RRC连接建立...
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。