对灰度图像进行基于边像强度和积分图文本定位并用框框出文本c语言
时间: 2024-02-13 10:01:44 浏览: 62
好的,下面是基于边缘强度和积分图的文本定位的C语言代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define WIDTH 640
#define HEIGHT 480
unsigned char input_img[HEIGHT][WIDTH]; // 输入灰度图像
unsigned char binary_img[HEIGHT][WIDTH]; // 二值化图像
unsigned char edge_img[HEIGHT][WIDTH]; // 边缘强度图像
unsigned int integral_img[HEIGHT][WIDTH]; // 积分图像
int main()
{
// 读入灰度图像
FILE *fp = fopen("input_gray.raw", "rb");
fread(input_img, sizeof(unsigned char), WIDTH * HEIGHT, fp);
fclose(fp);
// 对灰度图像进行二值化处理
for (int i = 0; i < HEIGHT; i++) {
for (int j = 0; j < WIDTH; j++) {
if (input_img[i][j] > 128) {
binary_img[i][j] = 255;
} else {
binary_img[i][j] = 0;
}
}
}
// 计算边缘强度图像
int sobel_x[3][3] = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}};
int sobel_y[3][3] = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}};
for (int i = 1; i < HEIGHT - 1; i++) {
for (int j = 1; j < WIDTH - 1; j++) {
int gx = 0, gy = 0;
for (int k = -1; k <= 1; k++) {
for (int l = -1; l <= 1; l++) {
gx += sobel_x[k + 1][l + 1] * binary_img[i + k][j + l];
gy += sobel_y[k + 1][l + 1] * binary_img[i + k][j + l];
}
}
int edge = sqrt(gx * gx + gy * gy);
if (edge > 255) {
edge = 255;
}
edge_img[i][j] = edge;
}
}
// 计算积分图像
for (int i = 0; i < HEIGHT; i++) {
for (int j = 0; j < WIDTH; j++) {
if (i == 0 && j == 0) {
integral_img[i][j] = edge_img[i][j];
} else if (i == 0) {
integral_img[i][j] = integral_img[i][j - 1] + edge_img[i][j];
} else if (j == 0) {
integral_img[i][j] = integral_img[i - 1][j] + edge_img[i][j];
} else {
integral_img[i][j] = integral_img[i - 1][j] + integral_img[i][j - 1] - integral_img[i - 1][j - 1] + edge_img[i][j];
}
}
}
// 计算文本区域并绘制边框
int min_size = 10; // 最小文本区域大小
int max_size = 1000; // 最大文本区域大小
int threshold = 100; // 文本区域平均强度阈值
for (int i = 1; i < HEIGHT - 1; i++) {
for (int j = 1; j < WIDTH - 1; j++) {
for (int k = i + min_size; k < HEIGHT; k++) {
for (int l = j + min_size; l < WIDTH; l++) {
int size = (k - i) * (l - j);
if (size > min_size && size < max_size) {
int sum = integral_img[k][l] - integral_img[k][j - 1] - integral_img[i - 1][l] + integral_img[i - 1][j - 1];
int mean = sum / size;
if (mean > threshold) {
// 绘制文本区域边框
for (int x = i; x <= k; x++) {
input_img[x][j] = 255;
input_img[x][l] = 255;
}
for (int y = j; y <= l; y++) {
input_img[i][y] = 255;
input_img[k][y] = 255;
}
}
}
}
}
}
}
// 保存结果图像
fp = fopen("output_text_detection.raw", "wb");
fwrite(input_img, sizeof(unsigned char), WIDTH * HEIGHT, fp);
fclose(fp);
return 0;
}
```
需要注意的是,此代码仅作为示例,实际应用中还需要根据具体情况进行参数调整和优化。
阅读全文