写一段基于pytorch的深度学习图像融合代码
时间: 2023-10-11 08:08:14 浏览: 124
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
以下是一个基于 PyTorch 的图像融合的示例代码,它将两张大小相同的图像进行融合:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
# 定义数据集
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, img_path1, img_path2):
self.img_path1 = img_path1
self.img_path2 = img_path2
self.transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def __getitem__(self, index):
img1 = Image.open(self.img_path1)
img2 = Image.open(self.img_path2)
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2
def __len__(self):
return 1
# 定义模型
class FusionNet(nn.Module):
def __init__(self):
super(FusionNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
def forward(self, img1, img2):
x = torch.cat([img1, img2], dim=1)
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.conv4(x)
return x
# 训练数据集路径
img_path1 = "/path/to/image1.jpg"
img_path2 = "/path/to/image2.jpg"
# 定义数据加载器
dataset = ImageDataset(img_path1, img_path2)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=1)
# 定义模型、损失函数和优化器
model = FusionNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
running_loss = 0.0
for data in dataloader:
img1, img2 = data
optimizer.zero_grad()
output = model(img1, img2)
loss = criterion(output, img1)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss))
# 图像融合
model.eval()
with torch.no_grad():
img1 = Image.open(img_path1)
img2 = Image.open(img_path2)
img1 = dataset.transform(img1).unsqueeze(0)
img2 = dataset.transform(img2).unsqueeze(0)
output = model(img1, img2)
output = output.squeeze(0)
output = output.permute(1, 2, 0)
output = (output + 1) / 2.0
output = output.detach().numpy() * 255.0
output = output.astype('uint8')
output = Image.fromarray(output)
output.save("/path/to/fused_image.jpg")
```
这个示例代码中,我们首先定义了一个数据集类 `ImageDataset`,它将两张图片进行数据预处理,并返回给训练器。接着,我们定义了一个融合网络 `FusionNet`,它包含了四个卷积层和一个 ReLU 激活函数。在训练过程中,我们使用均方误差损失函数和 Adam 优化器进行训练。最后,我们使用训练好的模型将两张输入图像进行融合,并将输出保存为一张新的图像。
阅读全文