spark rdd 去重
时间: 2023-10-12 21:11:20 浏览: 100
Spark RDD可以通过distinct()方法进行去重操作,例如:
```
val rdd = sc.parallelize(Seq(1, 2, 3, 3, 4, 4, 5))
val distinctRdd = rdd.distinct()
distinctRdd.collect().foreach(println)
```
输出结果为:
```
1
2
3
4
5
```
相关问题
sparkrdd算子
Spark RDD(弹性分布式数据集)是Spark中最基本的数据抽象,它代表了一个不可变、可分区、可并行计算的数据集合。RDD提供了一系列的算子(操作符)来进行数据的转换和计算。下面是一些常用的Spark RDD算子介绍:
1. 转换算子:
- map(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD。
- filter(func):对RDD中的每个元素应用给定的函数,返回满足条件的元素组成的新的RDD。
- flatMap(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,其中每个元素可以生成多个输出。
- union(otherRDD):返回一个包含两个RDD中所有元素的新RDD。
- distinct():返回一个去重后的新RDD。
2. 行动算子:
- count():返回RDD中元素的个数。
- collect():将RDD中的所有元素以数组的形式返回到驱动程序中。
- reduce(func):使用给定的函数逐个聚合RDD中的元素。
- first():返回RDD中的第一个元素。
- take(n):返回RDD中的前n个元素。
3. 键值对算子:
- reduceByKey(func):对具有相同键的元素进行聚合。
- sortByKey():按键对RDD进行排序。
- join(otherRDD):对两个RDD进行内连接。
- groupByKey():按键对RDD中的元素进行分组。
- mapValues(func):对RDD中的每个值应用给定的函数。
sparkrdd转换算子
Spark RDD(弹性分布式数据集)是Spark中最基本的数据抽象,它代表了一个不可变、可分区、可并行计算的数据集合。转换算子是用于对RDD进行转换操作的方法,可以通过转换算子对RDD进行各种操作和变换,生成新的RDD。
以下是一些常见的Spark RDD转换算子:
1. map(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中的每个元素都是原RDD中元素经过函数处理后的结果。
2. filter(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中只包含满足条件的元素。
3. flatMap(func):对RDD中的每个元素应用给定的函数,返回一个新的RDD,新RDD中的每个元素都是原RDD中元素经过函数处理后生成的多个结果。
4. union(other):返回一个包含原RDD和另一个RDD中所有元素的新RDD。
5. distinct():返回一个去重后的新RDD,其中不包含重复的元素。
6. groupByKey():对键值对RDD进行分组,返回一个新的键值对RDD,其中每个键关联一个由具有相同键的所有值组成的迭代器。
7. reduceByKey(func):对键值对RDD中具有相同键的值进行聚合操作,返回一个新的键值对RDD,其中每个键关联一个经过聚合函数处理后的值。
8. sortByKey():对键值对RDD中的键进行排序,返回一个新的键值对RDD,按照键的升序排列。
9. join(other):对两个键值对RDD进行连接操作,返回一个新的键值对RDD,其中包含两个RDD中具有相同键的所有元素。
阅读全文