vision Transformer的图像分类
时间: 2023-06-13 17:05:58 浏览: 111
VIT(vision transformer)实现图像分类
5星 · 资源好评率100%
Vision Transformer是一种基于Transformer结构的模型,用于图像分类任务。它的核心思想是将图像划分为一系列的图块,然后将每个图块的特征表示作为Transformer的输入。由于Transformer可以自适应不同长度的序列输入,因此可以对每个图块进行编码和聚合,以生成整个图像的特征表示。
具体来说,Vision Transformer将输入图像分为一系列的非重叠的图块,并将每个图块视为一个序列,然后通过一系列的Transformer编码器对每个图块进行编码。每个编码器由多头自注意力机制和全连接前馈网络组成,用于提取每个图块的特征表示,并将这些特征表示进行聚合,以生成整个图像的特征表示。最后,将这个特征表示传递给一个分类层,以预测图像的标签。
Vision Transformer已经在多个图像分类任务上取得了优秀的结果,包括ImageNet、CIFAR-10和CIFAR-100等数据集。
阅读全文