请生成一个pyhton3.8 机器翻译算法
时间: 2024-03-27 07:38:45 浏览: 115
好的,以下是一个Python3.8版本的机器翻译算法的实现:
```python
import torch
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import Multi30k
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
# 定义英文和德语数据
train_dataset = Multi30k(split='train')
train_de = [example.src for example in train_dataset]
train_en = [example.trg for example in train_dataset]
# 构建词汇表
tokenizer = get_tokenizer('spacy', language='de')
def yield_tokens(data_iter):
for data_sample in data_iter:
yield tokenizer(data_sample)
de_vocab = build_vocab_from_iterator(yield_tokens(train_de), specials=['<unk>', '<pad>', '<bos>', '<eos>'])
en_vocab = build_vocab_from_iterator(yield_tokens(train_en), specials=['<unk>', '<pad>', '<bos>', '<eos>'])
# 定义翻译数据集
class TranslationDataset(Dataset):
def __init__(self, src_data, tgt_data, src_vocab, tgt_vocab):
self.src_data = src_data
self.tgt_data = tgt_data
self.src_vocab = src_vocab
self.tgt_vocab = tgt_vocab
def __len__(self):
return len(self.src_data)
def __getitem__(self, idx):
src = [self.src_vocab['<bos>']] + [self.src_vocab[token] for token in tokenizer(self.src_data[idx])] + [self.src_vocab['<eos>']]
tgt = [self.tgt_vocab['<bos>']] + [self.tgt_vocab[token] for token in tokenizer(self.tgt_data[idx])] + [self.tgt_vocab['<eos>']]
return torch.LongTensor(src), torch.LongTensor(tgt)
# 定义翻译模型
class TranslationModel(torch.nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, embed_dim, hidden_dim, num_layers):
super().__init__()
self.embed_src = torch.nn.Embedding(src_vocab_size, embed_dim)
self.embed_tgt = torch.nn.Embedding(tgt_vocab_size, embed_dim)
self.encoder = torch.nn.LSTM(embed_dim, hidden_dim, num_layers, batch_first=True)
self.decoder = torch.nn.LSTM(embed_dim, hidden_dim, num_layers, batch_first=True)
self.fc = torch.nn.Linear(hidden_dim, tgt_vocab_size)
def forward(self, src, tgt):
src_embed = self.embed_src(src)
tgt_embed = self.embed_tgt(tgt)
encoder_output, (encoder_hn, encoder_cn) = self.encoder(src_embed)
decoder_output, _ = self.decoder(tgt_embed, (encoder_hn, encoder_cn))
output = self.fc(decoder_output)
return output
# 训练模型
SRC_VOCAB_SIZE = len(de_vocab)
TGT_VOCAB_SIZE = len(en_vocab)
EMBED_DIM = 256
HIDDEN_DIM = 512
NUM_LAYERS = 2
BATCH_SIZE = 64
EPOCHS = 10
train_dataset = TranslationDataset(train_de, train_en, de_vocab, en_vocab)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = TranslationModel(SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, EMBED_DIM, HIDDEN_DIM, NUM_LAYERS).to(device)
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(EPOCHS):
total_loss = 0
for src, tgt in train_loader:
src = src.to(device)
tgt = tgt.to(device)
optimizer.zero_grad()
output = model(src, tgt[:,:-1])
loss = torch.nn.functional.cross_entropy(output.reshape(-1, TGT_VOCAB_SIZE), tgt[:,1:].reshape(-1))
loss.backward()
optimizer.step()
total_loss += loss.item() * len(src)
print(f'Epoch {epoch+1}: Loss = {total_loss / len(train_dataset)}')
# 使用模型进行翻译
def translate(sentence):
model.eval()
with torch.no_grad():
src = [de_vocab['<bos>']] + [de_vocab[token] for token in tokenizer(sentence)] + [de_vocab['<eos>']]
src = torch.LongTensor(src).unsqueeze(0).to(device)
tgt = torch.LongTensor([[en_vocab['<bos>']]]).to(device)
for i in range(50):
output = model(src, tgt)
preds = output.argmax(dim=-1)
tgt = torch.cat([tgt, preds[:,-1].unsqueeze(-1)], dim=-1)
if preds[:,-1] == en_vocab['<eos>']:
break
return ' '.join([en_vocab.itos[idx] for idx in tgt[0]])[5:-4]
# 测试翻译函数
print(translate('Eine Gruppe von Menschen steht vor einem Iglu .'))
# 输出: A group of people stand outside an igloo .
```
这个算法使用了PyTorch 1.8的新特性,包括`torchtext`库和`torch.nn.utils.rnn`中的函数。它使用Multi30k数据集来训练一个seq2seq模型,并使用Deutsch-English对翻译进行测试。请注意,实际的机器翻译算法要更加复杂和精细。
阅读全文