用pyhton写一个遗传算法优化的多层感知机网络做回归预测
时间: 2024-05-04 07:17:17 浏览: 147
好的,下面是一个基于Python和PyTorch框架实现的遗传算法优化的多层感知机网络做回归预测的示例代码:
``` python
import torch
import torch.nn as nn
import numpy as np
import random
# 定义多层感知机神经网络
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 定义遗传算法优化器
class GA_optimizer():
def __init__(self, pop_size, gene_length, mutation_rate, cross_rate):
self.pop_size = pop_size
self.gene_length = gene_length
self.mutation_rate = mutation_rate
self.cross_rate = cross_rate
self.pop = np.zeros((self.pop_size, self.gene_length))
self.fitness = np.zeros((self.pop_size, 1))
self.best_fitness = 0.0
self.best_gene = np.zeros((self.gene_length,))
# 初始化种群
def init_pop(self):
for i in range(self.pop_size):
self.pop[i] = np.random.uniform(-1, 1, self.gene_length)
# 计算适应度
def calc_fitness(self, model, x, y):
total_loss = 0.0
for i in range(x.shape[0]):
input_data = torch.tensor(x[i], dtype=torch.float32)
target_data = torch.tensor(y[i], dtype=torch.float32)
output = model(input_data)
loss = torch.mean((output - target_data) ** 2)
total_loss += loss.item()
self.fitness = 1.0 / (total_loss + 1e-6)
if self.fitness > self.best_fitness:
self.best_fitness = self.fitness
self.best_gene = self.pop[np.argmax(self.fitness)]
# 交叉运算
def crossover(self, parent1, parent2):
child = np.zeros((self.gene_length,))
cross_point = np.random.randint(self.gene_length)
child[:cross_point] = parent1[:cross_point]
child[cross_point:] = parent2[cross_point:]
return child
# 变异运算
def mutation(self, gene):
for i in range(self.gene_length):
if random.random() < self.mutation_rate:
gene[i] = random.uniform(-1, 1)
return gene
# 更新种群
def evolve(self):
new_pop = np.zeros((self.pop_size, self.gene_length))
for i in range(self.pop_size):
parent1 = self.pop[self.select()]
parent2 = self.pop[self.select()]
child = self.crossover(parent1, parent2)
child = self.mutation(child)
new_pop[i] = child
self.pop = new_pop
# 选择操作
def select(self):
total_fitness = np.sum(self.fitness)
rand = random.uniform(0, total_fitness)
index = 0
while rand > 0:
rand -= self.fitness[index]
index += 1
index -= 1
return index
# 定义数据集
x_train = np.random.uniform(-1, 1, (1000, 10))
y_train = np.sum(x_train, axis=1)
# 定义超参数
input_size = 10
hidden_size = 20
output_size = 1
pop_size = 100
gene_length = (input_size * hidden_size) + (hidden_size * output_size)
mutation_rate = 0.01
cross_rate = 0.7
epochs = 100
# 初始化神经网络和遗传算法优化器
model = MLP(input_size, hidden_size, output_size)
optimizer = GA_optimizer(pop_size, gene_length, mutation_rate, cross_rate)
# 初始化种群并计算适应度
optimizer.init_pop()
optimizer.calc_fitness(model, x_train, y_train)
# 迭代训练
for epoch in range(epochs):
optimizer.evolve()
optimizer.calc_fitness(model, x_train, y_train)
# 显示每轮迭代的结果
print("epoch: %d, best_fitness: %f" % (epoch, optimizer.best_fitness))
# 使用遗传算法优化得到的最优个体更新神经网络参数
model.fc1.weight.data = torch.tensor(optimizer.best_gene[:input_size*hidden_size].reshape(hidden_size, input_size), dtype=torch.float32)
model.fc1.bias.data = torch.tensor(optimizer.best_gene[input_size*hidden_size:(input_size*hidden_size)+hidden_size], dtype=torch.float32)
model.fc2.weight.data = torch.tensor(optimizer.best_gene[(input_size*hidden_size)+hidden_size:(input_size*hidden_size)+hidden_size+hidden_size*output_size].reshape(output_size, hidden_size), dtype=torch.float32)
model.fc2.bias.data = torch.tensor(optimizer.best_gene[(input_size*hidden_size)+hidden_size+hidden_size*output_size:], dtype=torch.float32)
# 测试模型
x_test = np.random.uniform(-1, 1, (10, 10))
y_test = np.sum(x_test, axis=1)
for i in range(x_test.shape[0]):
input_data = torch.tensor(x_test[i], dtype=torch.float32)
target_data = torch.tensor(y_test[i], dtype=torch.float32)
output = model(input_data)
print("input: ", input_data)
print("output: ", output)
print("target: ", target_data)
```
在这个示例中,我们定义了一个包含一个输入层、一个隐藏层和一个输出层的多层感知机神经网络,并使用遗传算法优化器来搜索最优的神经网络参数。具体来说,我们使用遗传算法生成一个由多个个体(即一组神经网络参数)组成的种群,并计算每个个体的适应度(即神经网络在训练集上的拟合程度),然后使用交叉和变异运算来产生新的个体,并使用选择操作来选取最优的个体进行下一轮迭代。在迭代训练的过程中,我们不断更新遗传算法优化器中的种群和适应度,直到达到预设的迭代次数为止。最后,我们使用遗传算法优化得到的最优个体来更新神经网络参数,并测试模型的预测性能。
阅读全文