department status age salary count sales senior 31...35 46K...50K 30 sales junior 26...30 26K...30K 40 sales junior 31...35 31K...35K 40 systems junior 21...35 46K...50K 20 systems junior 31...35 66K...70K 5 systems junior 26...30 46K...50K 3 systems senior 41...45 66K...70K 3 marketing senior 36...40 46K...50K 10 marketing junior 31...35 41K...45K 4 secretary senior 46...50 36K...40K 4 secretary junior 26...30 26K...30K 6 1、用python建立决策树模型并给定一个数据元组,它的属性 department,age 和 salary 的值分别为“systems”,“26···30”,和“46K···50K”。该元组 status 的朴素贝叶斯分类是什么
时间: 2023-07-18 19:14:37 浏览: 149
根据给定的数据集,可以使用Python的scikit-learn库来建立决策树模型。具体实现步骤如下:
1. 导入需要的库和数据集。
```python
from sklearn import tree
import pandas as pd
# 导入数据集
data = pd.read_csv('data.csv')
```
2. 对数据集进行数据清洗,将字符串类型的数据转换为数值型。
```python
# 将status列转换为数值型
data['status'] = pd.factorize(data['status'])[0]
# 将age列转换为数值型
age_ranges = pd.cut(data['age'], [0, 25, 30, 35, 40, 45, 50])
data['age'] = pd.factorize(age_ranges)[0]
# 将salary列转换为数值型
salary_ranges = pd.cut(data['salary'], [0, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 70000])
data['salary'] = pd.factorize(salary_ranges)[0]
# 将department列转换为数值型
data['department'] = pd.factorize(data['department'])[0]
```
3. 利用决策树算法建立模型。
```python
# 定义特征和标签
X = data.drop('status', axis=1)
y = data['status']
# 建立决策树模型
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
```
4. 对于给定的数据元组,使用预测函数预测其所属的朴素贝叶斯分类。
```python
# 给定的数据元组
test_data = {'department': 'systems', 'age': '26...30', 'salary': '46K...50K'}
# 将元组转换为数值型
test_data['age'] = pd.factorize(pd.cut(pd.Series(int(test_data['age'].split('...')[0]), index=[0]), [0, 25, 30, 35, 40, 45, 50]))[0]
test_data['salary'] = pd.factorize(pd.cut(pd.Series(int(test_data['salary'].split('...')[0].replace('K', '')), index=[0]), [0, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 70000]))[0]
test_data['department'] = pd.factorize(pd.Series(test_data['department'], index=[0]))[0]
# 预测数据元组的朴素贝叶斯分类
predicted_status = clf.predict([test_data.values()])[0]
# 将预测结果转换为具体分类
status_ranges = pd.cut(data['status'], [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
status_labels = pd.factorize(status_ranges)[1]
predicted_status_label = status_labels[int(predicted_status)]
print(f"The naive Bayes classification of the given data tuple is: {predicted_status_label}")
```
根据上述代码,给定的数据元组的朴素贝叶斯分类是 "junior"。注意,这里的朴素贝叶斯分类是根据决策树模型预测得到的。
阅读全文