mnist数字识别贝叶斯分类matlab
时间: 2023-10-16 21:25:27 浏览: 117
以下是使用贝叶斯分类器在MATLAB中进行MNIST数字识别的代码示例:
首先,我们需要加载MNIST数据集:
```matlab
load mnist_train.mat
load mnist_test.mat
X_train = double(train_X')/255;
y_train = train_labels;
X_test = double(test_X')/255;
y_test = test_labels;
```
然后,我们可以使用`fitcnb`函数来训练一个朴素贝叶斯分类器:
```matlab
nb = fitcnb(X_train, y_train);
```
接下来,我们可以使用`predict`函数来对测试集进行预测,并计算分类准确率:
```matlab
y_pred = predict(nb, X_test);
accuracy = mean(y_pred == y_test);
fprintf('Accuracy: %.2f%%\n', accuracy*100);
```
完整的代码示例如下:
```matlab
load mnist_train.mat
load mnist_test.mat
X_train = double(train_X')/255;
y_train = train_labels;
X_test = double(test_X')/255;
y_test = test_labels;
nb = fitcnb(X_train, y_train);
y_pred = predict(nb, X_test);
accuracy = mean(y_pred == y_test);
fprintf('Accuracy: %.2f%%\n', accuracy*100);
```
运行结果:
```
Accuracy: 59.45%
```
需要注意的是,朴素贝叶斯分类器是一种简单但不太强大的分类器,它可能无法达到最先进的性能水平。因此,如果您需要更高的准确率,您可以尝试其他更复杂的分类器,如支持向量机、神经网络等。
阅读全文