1)进入线性系统模块库,构建传递函数。点击 simulink 下的“continuous”,再将右边

时间: 2023-06-24 17:05:46 浏览: 110
的“Transfer Fcn”拖入模型中。然后双击该模块,设置传递函数的分子和分母。例如,如果传递函数为 G(s) = (s+1)/(s^2+2s+1),则分子为 [1 1],分母为 [1 2 1]。 2)添加输入信号和输出信号。点击 simulink 下的“sources”,将“Step”拖入模型中作为输入信号。然后点击“sinks”,将“Scope”拖入模型中作为输出信号。 3)连接输入输出信号和传递函数。将输入信号的输出口与传递函数的输入口相连,将传递函数的输出口与输出信号的输入口相连。 4)运行模型。点击 simulink 工具栏上的“Run”按钮,模型将开始仿真并在作用于传递函数的输入信号下输出响应。可以使用“Scope”模块查看输出信号的波形。
相关问题

simulink中传递函数模块

在Simulink中,传递函数模块是一个用于传递输入信号到输出信号的基本模块。它是一个非常灵活的模块,可以用于各种应用中,例如数字滤波器和控制器设计等。 传递函数模块的输入和输出信号可以是任何类型的信号,例如标量、矢量或矩阵。它还可以支持各种不同的采样时间,包括连续时间和离散时间。 传递函数模块通过一个传递函数来实现输入和输出之间的关系。传递函数可以是一个简单的标量系数,也可以是一个复杂的分数多项式。在Simulink中,传递函数可以用一个分子和分母多项式来表示,其中分子多项式代表传递函数的分子部分,分母多项式代表传递函数的分母部分。 当建立了一个传递函数模块后,你可以通过调整传递函数来改变输入和输出之间的关系。这可以通过直接编辑传递函数或者使用Simulink中提供的工具来完成。

如何基于延迟模块搭建一阶延迟传递函数simulink

在Simulink中搭建一阶延迟传递函数可以通过使用迟模块来实现下面是基于延迟模块搭一阶延迟传递函数的步骤1. 打开Simulink并一个新模型。 2. 在模型找到 "Sources" 库,并从中动一个 "Step" 模块到模中。这将作为输入信源。 3. 在模型中找到Continuous" 库,并从中拖动一个 " Fcn" 模块到模型中。将作为一阶传函数模块。 4 连接 Step 模块的端口到 Transfer F块的输入端口5. 双击 Transfer Fcn块,设置 Transfer Function。对于一阶传函数,参数应为 [K] / [T, 1],其中 K 是传递的增益,T 是传递函数的时间常数。 6. 在模型中找到 "Discrete" 库,并从中拖动一个 "Unit Delay" 模块到模型中。这将作为延迟模块。 7. 连接 Transfer Fcn 模块的输出端口到 Unit Delay 模块的输入端口。 8. 连接 Unit Delay 模块的输出端口到 Transfer Fcn 模块的反馈输入端口。 9. 在模型中找到 "Sinks" 库,并从中拖动一个 "Scope" 模块到模型中。这将作为输出信号的显示器。 10. 连接 Transfer Fcn 模块的输出端口到 Scope 模块的输入端口。 11. 保存并运行模型,然后观察 Scope 模块中的输出信号。 通过以上步骤,你可以基于延迟模块成功搭建一阶延迟传递函数的Simulink模型。你可以根据需要调整传递函数的参数以及添加其他模块来扩展模型的功能。

相关推荐

最新推荐

recommend-type

基于Matlab/Simulink的变频系统仿真

3. 输出电压频率、幅值可变的变频器仿真用结构图:代表PWM控制的三相交-直-交变频系统,系统输入为三相50Hz的工频电源,经采用SPWM整流器Universal Bridge1的整流,输出直流电压经电容器滤波,再进入可以外控电压...
recommend-type

液压钻孔机械手液压系统的MATLAB/Simulink仿真分析

以自行设计的多自由度液压钻孔机械手的液压系统为研究对象,重点研究了机械手钻头夹持部位的阀控液压缸系统,建立了液压系统动态仿真模型。详细介绍了利用Simulink对液压系统的动态特性进行仿真的方法。针对机械手电液...
recommend-type

Simulink各窗口模块中文名称-Matlab-Simulink窗口里各模块中文名称.doc

Simulink各窗口模块中文名称-Matlab-Simulink窗口里各模块中文名称.doc 一个全英文的软件,有些陌生的模块难免会不认识, 在窗口相应位置 注释相应模块的中文名称 会有助于对模块的理解。 示例-数学模块 ...
recommend-type

基于MATLAB/SIMULINK的心电信号源系统设计

基于MATLAB/SIMULINK的心电信号源系统设计 心电信号是一种非常重要的生理信号,对医疗健康和生物医学研究具有重要意义。本文介绍了基于MATLAB/SIMULINK的心电信号源系统设计,旨在解决实际心电信号采集过程中硬件...
recommend-type

ControlSystemToolbox(控制系统工具箱).pdf

您可以将您的系统指定为传递函数、 状态空间、零极点增益或频率响应模型。 通过交互 式工具和命令行函数(如阶跃响应图和波特图) ,您可以实现时域和频域中系统行为的可视 化效果。可以使用自动 PID 控制器调节、...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。