// Update Kalman Filters state for(int i=0;i<assignment.size();i++) { // If track updated less than one time, than filter state is not correct. tracks[i]->KF->GetPrediction(); if(assignment[i] >= 0 && assignment[i] < M) // If we have assigned detect, then update using its coordinates, { tracks[i]->skipped_frames=0; tracks[i]->prediction=tracks[i]->KF->Update(detections[assignment[i]], 1); } else // if not continue using predictions { tracks[i]->prediction=tracks[i]->KF->Update(Point2f(0,0),0); } if(tracks[i]->trace.size()>max_trace_length) { tracks[i]->trace.erase(tracks[i]->trace.begin(),tracks[i]->trace.end()-max_trace_length); } tracks[i]->trace.push_back(tracks[i]->prediction); tracks[i]->KF->LastResult=tracks[i]->prediction; } }
时间: 2023-06-17 19:03:48 浏览: 171
这段代码是针对多目标跟踪中的卡尔曼滤波器进行状态更新的。首先,对于每一个跟踪器,我们使用卡尔曼滤波器进行预测。然后,如果该跟踪器已经与某个检测结果进行了匹配,则使用该检测结果的坐标进行更新。如果没有匹配,则继续使用预测的结果。最后,将该跟踪器的预测结果添加到其轨迹中,同时将轨迹长度进行限制,避免占用过多内存。
阅读全文