那我怎么在鸢尾花数据集上面设置五个输入层,一个输出层,10个隐藏层的的多层感知机
时间: 2023-06-25 20:02:53 浏览: 91
在鸢尾花数据集上使用多层感知机可以采用以下步骤:
1. 导入必要的库和数据集
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow.keras import layers, Sequential
```
2. 加载数据集并划分训练集和测试集
```python
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
```
3. 对数据进行标准化处理
```python
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```
4. 定义模型结构
```python
model = Sequential([
layers.Input(shape=(5,)),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(3, activation='softmax')
])
```
5. 编译模型并训练
```python
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test))
```
6. 对测试集进行预测并计算准确率
```python
y_pred = model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
accuracy = np.mean(y_pred == y_test)
print(f'Test accuracy: {accuracy:.2%}')
```
这里使用了10个隐藏层,每个隐藏层有10个神经元。输入层有5个神经元,输出层有3个神经元(对应三种鸢尾花品种)。可以根据需要调整隐藏层和神经元的数量。
阅读全文
相关推荐

















