import numpy as np # 定义三角形节点坐标和单元节点关系 nodes = np.array([[0, 0], [0, 1], [1, 0]]) elems = np.array([[0, 1, 2]]) # 定义材料的弹性模量和泊松比 E = 210e9 nu = 0.3 # 计算材料的弹性矩阵 D = E / (1 - nu ** 2) * np.array([[1, nu, 0], [nu, 1, 0], [0, 0, (1 - nu) / 2]]) # 构造三角形常应变单元的刚度矩阵 def get_element_stiffness_matrix(elem): x1, y1 = nodes[elem[0]] x2, y2 = nodes[elem[1]] x3, y3 = nodes[elem[2]] A = 0.5 * abs(x1 * y2 + x2 * y3 + x3 * y1 - x1 * y3 - x2 * y1 - x3 * y2) B = np.array([[y2 - y3, 0, y3 - y1, 0, y1 - y2, 0], [0, x3 - x2, 0, x1 - x3, 0, x2 - x1], [x3 - x2, y2 - y3, x1 - x3, y3 - y1, x2 - x1, y1 - y2]]) return A * np.linalg.inv(B.T @ D @ B) # 构造整体刚度矩阵 num_nodes = nodes.shape[0] num_elems = elems.shape[0] K = np.zeros((2 * num_nodes, 2 * num_nodes)) for i in range(num_elems): elem = elems[i] ke = get_element_stiffness_matrix(elem) for r in range(3): for c in range(3): K[2 * elem[r], 2 * elem[c]] += ke[2 * r, 2 * c] K[2 * elem[r], 2 * elem[c] + 1] += ke[2 * r, 2 * c + 1] K[2 * elem[r] + 1, 2 * elem[c]] += ke[2 * r + 1, 2 * c] K[2 * elem[r] + 1, 2 * elem[c] + 1] += ke[2 * r + 1, 2 * c + 1] # 定义边界条件 fixed_nodes = [0] fixed_dofs = [2 * i for i in fixed_nodes] free_dofs = [i for i in range(2 * num_nodes) if i not in fixed_dofs] # 定义外力 F = np.zeros(2 * num_nodes) F[2] = -5000 # 求解位移场 K_ff = K[np.ix_(free_dofs, free_dofs)] F_f = F[free_dofs] u_f = np.linalg.solve(K_ff, F_f) u = np.zeros(2 * num_nodes) u[free_dofs] = u_f # 输出结果 print("位移场:") print(u.reshape(-1, 2)) print("应力场:") for i in range(num_elems): x1, y1 = nodes[elem[0]] x2, y2 = nodes[elem[1]] x3, y3 = nodes[elem[2]] elem = elems[i] u_e = u[2 * elem] B_e = np.array([[y2 - y3, 0, y3 - y1, 0, y1 - y2, 0], [0, x3 - x2, 0, x1 - x3, 0, x2 - x1], [x3 - x2, y2 - y3, x1 - x3, y3 - y1, x2 - x1, y1 - y2]]) epsilon_e = B_e @ u_e sigma_e = D @ epsilon_e print(sigma_e)这段代码中的定义边界条件和定义外力

时间: 2024-04-05 14:31:46 浏览: 144
定义边界条件的代码如下: fixed_nodes = [0] fixed_dofs = [2 * i for i in fixed_nodes] 其中,fixed_nodes表示被固定的节点的编号,fixed_dofs表示这些节点在整体位移场中的自由度编号,其中乘以2是因为每个节点有两个自由度(x和y方向)。这里的代码表示将节点0固定。 定义外力的代码如下: F = np.zeros(2 * num_nodes) F[2] = -5000 其中,F表示整体外力向量,num_nodes表示节点总数,这里的代码表示将节点2处施加一个向下的力5000N。同样乘以2是因为每个节点有两个自由度(x和y方向)。
相关问题

在Python中已知三维网格节点坐标,如何获取面坐标

在Python中,如果你有一个三维网格模型,每个节点都有对应的三个坐标值(通常是x、y、z),而你需要获取这个网格的面(即二维表面)的坐标,通常需要将这些节点连接起来形成三角形或四边形等简单多边形。这涉及到图形学中的顶点数据结构以及基本的几何操作。 一种常见的做法是使用`numpy`数组存储节点坐标,并利用图论库如`networkx`或直接编码几何关系来构建邻接矩阵。然后你可以通过遍历相邻节点或使用专门的数据结构(如`trimesh`包中的`Trimesh`对象)来生成面(face)的坐标列表,每行代表一个面的三个顶点。 这里是一个简单的示例,假设`vertices`是一个包含所有节点坐标的`numpy`数组: ```python import numpy as np # 假设 vertices 是形状 (n_nodes, 3) 的数组 vertices = np.array([[x1, y1, z1], [x2, y2, z2], ...]) # 想象我们使用邻接矩阵 `adjacency_matrix` 来表示面,例如使用三元组表示每个面 # adjacency_matrix[i][j] 表示节点 i 和 j 连接形成一个面 adjacency_matrix = ... faces = [] for i in range(len(adjacency_matrix)): # 取出 i 对应的行 row = adjacency_matrix[i] face = [vertices[j] for j in row if j != i] # 排除自身 faces.append(face) # faces 现在是一个二维数组,每一行都是一个面的坐标列表 ``` 请注意,实际应用中可能会有多种方法来组织和计算面坐标,取决于你的数据结构和具体需求。

给我一个用python语言写的三角形常应变单元的有限元代码

以下是一个用Python语言编写的三角形常应变单元的有限元代码: ```python import numpy as np # 定义三角形节点坐标和单元节点关系 nodes = np.array([[0, 0], [0, 1], [1, 0]]) elems = np.array([[0, 1, 2]]) # 定义材料的弹性模量和泊松比 E = 210e9 nu = 0.3 # 计算材料的弹性矩阵 D = E / (1 - nu ** 2) * np.array([[1, nu, 0], [nu, 1, 0], [0, 0, (1 - nu) / 2]]) # 构造三角形常应变单元的刚度矩阵 def get_element_stiffness_matrix(elem): x1, y1 = nodes[elem[0]] x2, y2 = nodes[elem[1]] x3, y3 = nodes[elem[2]] A = 0.5 * abs(x1 * y2 + x2 * y3 + x3 * y1 - x1 * y3 - x2 * y1 - x3 * y2) B = np.array([[y2 - y3, 0, y3 - y1, 0, y1 - y2, 0], [0, x3 - x2, 0, x1 - x3, 0, x2 - x1], [x3 - x2, y2 - y3, x1 - x3, y3 - y1, x2 - x1, y1 - y2]]) return A * D @ B.T @ np.linalg.inv(B @ D @ B.T) # 构造整体刚度矩阵 num_nodes = nodes.shape[0] num_elems = elems.shape[0] K = np.zeros((2 * num_nodes, 2 * num_nodes)) for i in range(num_elems): elem = elems[i] ke = get_element_stiffness_matrix(elem) for r in range(3): for c in range(3): K[2 * elem[r], 2 * elem[c]] += ke[2 * r, 2 * c] K[2 * elem[r], 2 * elem[c] + 1] += ke[2 * r, 2 * c + 1] K[2 * elem[r] + 1, 2 * elem[c]] += ke[2 * r + 1, 2 * c] K[2 * elem[r] + 1, 2 * elem[c] + 1] += ke[2 * r + 1, 2 * c + 1] # 定义边界条件 fixed_nodes = [0] fixed_dofs = [2 * i for i in fixed_nodes] free_dofs = [i for i in range(2 * num_nodes) if i not in fixed_dofs] # 定义外力 F = np.zeros(2 * num_nodes) F[2] = -5000 # 求解位移场 K_ff = K[np.ix_(free_dofs, free_dofs)] F_f = F[free_dofs] u_f = np.linalg.solve(K_ff, F_f) u = np.zeros(2 * num_nodes) u[free_dofs] = u_f # 输出结果 print("位移场:") print(u.reshape(-1, 2)) print("应力场:") for i in range(num_elems): elem = elems[i] u_e = u[2 * elem] B_e = np.array([[y2 - y3, 0, y3 - y1, 0, y1 - y2, 0], [0, x3 - x2, 0, x1 - x3, 0, x2 - x1], [x3 - x2, y2 - y3, x1 - x3, y3 - y1, x2 - x1, y1 - y2]]) epsilon_e = B_e @ u_e sigma_e = D @ epsilon_e print(sigma_e) ``` 该代码中,首先定义了三角形的节点坐标和单元节点关系,在此基础上计算了材料的弹性矩阵,并利用它构造了三角形常应变单元的刚度矩阵。然后,通过遍历所有单元,将它们的刚度矩阵叠加到整体刚度矩阵中。接着,定义了边界条件和外力,并利用求解线性方程组的方法求解了位移场。最后,利用位移场计算了应变场和应力场,并输出了结果。
阅读全文

相关推荐

大家在看

recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

UD18415B_海康威视信息发布终端_快速入门指南_V1.1_20200302.pdf

仅供学习方便使用,海康威视信息发布盒配置教程
recommend-type

qt mpi程序设计

qt中使用mpi进行程序设计,以pi的计算来讲解如何使用mpi进行并行程序开发
recommend-type

考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年

408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业4
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。

最新推荐

recommend-type

Python Numpy:找到list中的np.nan值方法

import numpy as np x = np.array([2, 3, np.nan, 5, np.nan, 5, 2, 3]) # 简单查找np.nan值 for item in x: if np.isnan(item): print('yes') ``` 在这个例子中,`np.isnan(item)`函数被用来遍历数组`x`的每个...
recommend-type

numpy:np.newaxis 实现将行向量转换成列向量

例如,如果你有数组`x = np.array([0, 1, 2])`,这是一个形状为`(3,)`的行向量,你可以使用`x[:, np.newaxis]`或者等价的`x[:, None]`将其转换为形状为`(3, 1)`的列向量: ```python x = np.array([0, 1, 2]) x_...
recommend-type

python numpy库np.percentile用法说明

`numpy.percentile` 是 Python 的科学计算库 numpy 中的一个功能强大的函数,用于计算数组数据的分位数。分位数是一种统计学上的概念,它将数据集分为相等的几部分,例如,第一四分位数(Q1)将数据分为前25%和后75%...
recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依