tensorflow2用DPCNN和GCN预测数据,输入绝对路径下的一列的csv数据作为训练集数据,训练集95%作为测试集,并将预测值和实际值画曲线显示,最后把loss和acc结果按epochs可视化
时间: 2024-03-18 12:39:26 浏览: 56
好的,这个问题包含了很多内容,需要分步骤回答。我将尽力回答您的问题,但是请注意,这里的代码只是示例,并且可能需要根据您的具体情况进行修改。
1. 加载数据:
```python
import pandas as pd
import numpy as np
# 读取csv文件
data = pd.read_csv('path/to/your/csv/file.csv', header=None)
# 将数据分为输入和输出
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 将输出转换为one-hot编码(如果是分类问题)
from tensorflow.keras.utils import to_categorical
y = to_categorical(y)
```
2. 划分数据集:
```python
from sklearn.model_selection import train_test_split
# 划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05, random_state=42)
```
3. 构建模型:
```python
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, GlobalMaxPooling1D, Concatenate
# 输入层
inputs = Input(shape=(X_train.shape[1],))
# DPCNN
conv1 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu')(inputs)
conv2 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu')(conv1)
pool1 = MaxPooling1D(pool_size=2)(conv2)
conv3 = Conv1D(filters=128, kernel_size=3, padding='same', activation='relu')(pool1)
conv4 = Conv1D(filters=128, kernel_size=3, padding='same', activation='relu')(conv3)
pool2 = MaxPooling1D(pool_size=2)(conv4)
conv5 = Conv1D(filters=256, kernel_size=3, padding='same', activation='relu')(pool2)
conv6 = Conv1D(filters=256, kernel_size=3, padding='same', activation='relu')(conv5)
conv7 = Conv1D(filters=256, kernel_size=3, padding='same', activation='relu')(conv6)
pool3 = MaxPooling1D(pool_size=2)(conv7)
# 将输入和DPCNN的输出连接
concat = Concatenate()([inputs, GlobalMaxPooling1D()(pool3)])
# GCN
dense1 = Dense(units=512, activation='relu')(concat)
dropout1 = Dropout(rate=0.5)(dense1)
dense2 = Dense(units=256, activation='relu')(dropout1)
dropout2 = Dropout(rate=0.5)(dense2)
dense3 = Dense(units=128, activation='relu')(dropout2)
dropout3 = Dropout(rate=0.5)(dense3)
outputs = Dense(units=y.shape[1], activation='softmax')(dropout3)
# 定义模型
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
4. 训练模型:
```python
history = model.fit(X_train, y_train, validation_split=0.05, epochs=100, batch_size=32)
```
5. 可视化结果:
```python
import matplotlib.pyplot as plt
# 绘制训练集和验证集的loss曲线
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.legend()
plt.show()
# 绘制训练集和验证集的accuracy曲线
plt.plot(history.history['accuracy'], label='train_acc')
plt.plot(history.history['val_accuracy'], label='val_acc')
plt.legend()
plt.show()
# 在测试集上评估模型
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test loss:', test_loss)
print('Test accuracy:', test_acc)
```
希望这些代码可以帮到您!
阅读全文