char q = 0141; cout<<q; 解释一下

时间: 2024-06-07 08:09:46 浏览: 8
这段代码的输出结果是字符 'a'。 在这段代码中,变量 q 被初始化为八进制数 0141,它的二进制表示为 0001 0100 0001。因为这是一个字符类型的变量,所以它被解释为 ASCII 码中的一个字符。 ASCII 码中,十六进制数 0x61 对应的是字符 'a',它的二进制表示为 0110 0001,与变量 q 的二进制表示相同。因此,输出结果为字符 'a'。
相关问题

修改代码:#include <string> void main() { char str[100]; char *p, *q; cout<<"Input a string with uppercase, lowercase or digits: "<<endl; cin.getline(str,99); p = str; while (p != '\0') { if (*p >= 97 && *p <= 122) *p -= 32; p++; } q = str; while (q != '\0') { if (*q >= 65 && *q <= 90) *q += 32; q++; } cout<<"Original: "<<str<<endl; cout<<"Uppercase: "<<p<<endl; cout<<"Lower: "<<q<<endl; }

修改后的代码如下: ```c++ #include <iostream> #include <string> using namespace std; int main() { char str[100]; char *p, *q; cout << "Input a string with uppercase, lowercase or digits: " << endl; cin.getline(str, 99); p = str; while (*p != '\0') { if (*p >= 97 && *p <= 122) *p -= 32; p++; } q = str; while (*q != '\0') { if (*q >= 65 && *q <= 90) *q += 32; q++; } cout << "Original: " << str << endl; cout << "Uppercase: "; for (int i = 0; i < strlen(str); i++) { if (*(p - strlen(str) + i) <= 'Z' && *(p - strlen(str) + i) >= 'A') { cout << char(*(p - strlen(str) + i) + 32); } else { cout << *(p - strlen(str) + i); } } cout << endl; cout << "Lower: "; for (int i = 0; i < strlen(str); i++) { if (*(q - strlen(str) + i) <= 'z' && *(q - strlen(str) + i) >= 'a') { cout << char(*(q - strlen(str) + i) - 32); } else { cout << *(q - strlen(str) + i); } } cout << endl; return 0; } ``` 修改说明: 1. 将 `void main()` 改为 `int main()`。 2. 在开头添加 `#include <iostream>`,因为要使用 `cout` 和 `endl`。 3. 在 `while (p != '\0')` 和 `while (q != '\0')` 中,将 `!=` 改为 `!= '\0'`,因为 `p` 和 `q` 都是指针类型,不能和字符类型的 `'\0'` 进行比较。 4. 在输出 `Uppercase` 和 `Lower` 时,需要遍历整个字符串,依次判断每个字符是否是大写或小写字母,然后进行转换。因此需要使用 `strlen(str)` 获取字符串长度,并且通过指针的算术运算来访问字符串中的每个字符。

#include<iostream> using namespace std; /* 根据上下文,特别是16,21,28行代码,修改以下代码,使之正常输出 */ struct Person { char name[16]; int age; } /*** int main() { per a; strcpy(a.name, "xiaomi"); a.age = 7; cout<<a.name<<" "<<a.age<<endl; //------------------------------------// per *q; q = new Person[sizeof(struct Person)]; strcpy(q->name, "xiaobai"); q->age = 8; cout<<q->name<<" "<<q->age<<endl; delete q; //------------------------------------// perptr p; p = new Person[sizeof(struct Person)]; strcpy(p->name, "xiaotao"); p->age = 9; cout<<p->name<<" "<<p->age<<endl; delete p; return 0; } **/

#include<iostream> #include<cstring> using namespace std; struct Person { char name[16]; int age; }; int main() { Person a; strcpy(a.name, "xiaomi"); a.age = 7; cout<<a.name<<" "<<a.age<<endl; Person *q; q = new Person; strcpy(q->name, "xiaobai"); q->age = 8; cout<<q->name<<" "<<q->age<<endl; delete q; Person *p; p = new Person; strcpy(p->name, "xiaotao"); p->age = 9; cout<<p->name<<" "<<p->age<<endl; delete p; return 0; }

相关推荐

#include<iostream> #include<queue> using namespace std; #define MAXNUM 100 char visited1[MAXNUM]; typedef struct{ char vexs[MAXNUM]; //顶点 int arcs[MAXNUM][MAXNUM];//边 int vexnum,arcnum; } AMGraph; int LocateVex(AMGraph G,char v){ for(int i = 0; i < G.vexnum; i++){ if(G.vexs[i] == v)return i; } return -1; } int CreateUNG(AMGraph &G){ char v1,v2; cout<<"请输入顶点数和边数:"; cin>>G.vexnum>>G.arcnum; cout<<"请依次输入顶点:"; for(int i = 0; i < G.vexnum; i++)cin>>G.vexs[i]; for(int j = 0; j < G.vexnum; j++) for(int i = 0; i < G.vexnum; i++) G.arcs[j][i] = 0; //初始化邻接矩阵 cout<<"请依次输入邻边:"<<endl; for(int k = 0; k < G.arcnum; k++){ cin>>v1>>v2; int i = LocateVex(G,v1); int j = LocateVex(G,v2); G.arcs[i][j] = 1; G.arcs[j][i] = 1; } return 1; } void DFT_AM(AMGraph G,int i){ //深度优先遍历邻接矩阵 cout<<G.vexs[i]; visited1[i] = 1; for(int j = 0; j < G.vexnum; j++){ if(G.arcs[i][j] == 1 && !visited1[j])DFT_AM(G,j); } } void BFT_AM(AMGraph G, int i) { //广度优先遍历邻接矩阵 queue<int> Q; //定义队列Q Q.push(i); //将起始顶点入队 visited1[i] = 1; //标记为已访问 while (!Q.empty()) { //重复步骤2-3,直到队列为空 int cur = Q.front(); //取出队首元素 Q.pop(); //出队 cout << G.vexs[cur]; //访问该顶点 for (int j = 0; j < G.vexnum; j++) { if (G.arcs[cur][j] == 1 && !visited1[j]) { //遍历该顶点的邻接点,将未访问的邻接点入队 Q.push(j); visited1[j] = 1; //标记为已访问 } } } } int main(){ AMGraph G; CreateUNG(G); for(int j = 0; j < G.vexnum; j++){ //输出邻接矩阵 for(int i = 0; i < G.vexnum; i++) cout<<G.arcs[j][i]<<" "; cout<<endl; } cout<<endl<<"输出深度优先序列:"; DFT_AM(G,0); cout << endl << "输出广度优先序列:"; for (int i = 0; i < MAXNUM; i++) visited1[i] = 0; //重置visited1数组 BFT_AM(G, 0); } 请改良此代码

#include<iostream> #include<queue> #include<vector> using namespace std; // 定义图的邻接表结构 struct edge { int dest; edge* next; }; struct vertex { edge* head; }; // 图类 class Graph { private: int V; // 顶点数 vertex* adj; // 邻接表 public: Graph(int V) { this->V = V; adj = new vertex[V]; for (int i = 0; i < V; ++i) { adj[i].head = nullptr; } } // 添加边 void addEdge(int src, int dest) { edge* e = new edge; e->dest = dest; e->next = adj[src].head; adj[src].head = e; } // 深度优先遍历 void DFS(int v, bool* visited) { visited[v] = true; cout << v << " "; edge* e = adj[v].head; while (e != nullptr) { if (!visited[e->dest]) { DFS(e->dest, visited); } e = e->next; } } // 广度优先遍历 void BFS(int v, bool* visited) { queue<int> q; visited[v] = true; q.push(v); while (!q.empty()) { int u = q.front(); q.pop(); cout << u << " "; edge* e = adj[u].head; while (e != nullptr) { if (!visited[e->dest]) { visited[e->dest] = true; q.push(e->dest); } e = e->next; } } } }; int main() { int V, E; cout << "请输入顶点数和边数:" << endl; cin >> V >> E; Graph g(V); cout << "请输入每条边的起点和终点:" << endl; for (int i = 0; i < E; ++i) { int src, dest; cin >> src >> dest; g.addEdge(src, dest); } // 深度优先遍历 cout << "深度优先遍历结果为:" << endl; bool* visited = new bool[V]; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.DFS(i, visited); } } cout << endl; // 广度优先遍历 cout << "广度优先遍历结果为:" << endl; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.BFS(i, visited); } } cout << endl; return 0; }这段代码从输入数字修改为输入为字母

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解