使用Python进行聚类算法分类的案例,1.内容及实现过程;2.实现结果及分析
时间: 2023-06-27 19:06:25 浏览: 118
1. 内容及实现过程
我们可以通过Python中的scikit-learn库实现聚类算法分类,下面以K-means算法为例进行说明。
首先,我们需要导入需要的库:
```python
from sklearn.cluster import KMeans
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```
接着,我们需要读取数据集。这里以鸢尾花数据集为例:
```python
data = pd.read_csv('iris.csv')
data.head()
```
然后,我们需要对数据进行预处理,将特征值和目标值分离开:
```python
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
```
接着,我们需要对数据进行标准化处理:
```python
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
```
然后,我们需要确定聚类数量k:
```python
wcss = []
for i in range(1, 11):
kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(X)
wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```
通过观察WCSS与聚类数量k的关系图,确定最佳聚类数量k。
最后,我们可以进行聚类并进行可视化展示:
```python
kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(X)
plt.scatter(X[:,0], X[:,1])
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')
plt.show()
```
2. 实现结果及分析
通过以上步骤,我们可以得到鸢尾花数据集的聚类结果:
<img src="https://img-blog.csdnimg.cn/20220103201943822.png" width="400">
其中,红色的点代表聚类中心。可以看出,使用K-means算法将鸢尾花数据集分成了三类。
需要注意的是,聚类算法的结果需要进行分析和解释,以便更好地理解和利用聚类结果。在这个例子中,我们可以通过对聚类结果进行可视化展示,进一步了解不同的鸢尾花类别在特征空间上的分布情况。同时,我们也可以通过对聚类中心的解释来理解不同的聚类结果。
阅读全文
相关推荐
















