le = preprocessing.LabelEncoder() for col in data.columns: data[col] = le.fit_transform(data[col]) data.head() data.to_csv('Preprocessing_Titanic.csv') del data['who'] data_ = data.T.drop_duplicates().T print('去重前:', len(data.columns))
时间: 2024-01-17 22:05:48 浏览: 97
预处理数据
这段代码中,首先使用了sklearn库中的preprocessing模块中的LabelEncoder()函数对数据进行编码处理。对于数据集中的每一列进行遍历,将每一列中的元素都进行标准化编码处理,然后再将处理后的数据集保存到Preprocessing_Titanic.csv文件中。
接下来,使用了del语句删除了数据集中的“who”这一列,然后使用了数据的转置和去重操作,将数据集中重复的列进行删除,最终得到了没有重复列的数据集,并输出了数据集中的列数。
这段代码的主要作用是对Titanic数据集进行预处理和清洗,使得数据集中的每一列都符合标准化的编码格式,并且去除了数据集中的重复列。
阅读全文