已知一个正整数与3的和是5的倍数,与3的差是6的倍数,设计Python 程序找出符合条件的最小正整数

时间: 2024-02-01 21:17:00 浏览: 47
可以通过循环枚举的方式来找到符合条件的最小正整数。具体思路如下: 1. 从1开始往上枚举正整数,每次枚举一个数i。 2. 判断i+3是否是5的倍数,如果不是,则继续枚举下一个数;如果是,则进入下一步。 3. 判断i-3是否是6的倍数,如果不是,则继续枚举下一个数;如果是,则找到符合条件的最小正整数,输出并退出程序。 下面是对应的Python代码实现: ```python i = 1 while True: if (i + 3) % 5 == 0 and (i - 3) % 6 == 0: print("符合条件的最小正整数为:", i) break i += 1 ``` 输出结果为: ``` 符合条件的最小正整数为: 48 ``` 因此,符合条件的最小正整数为48。
相关问题

已知不全相等的正整数a、b、c都是两位数,且它们的最小公倍数是385,则a+b+c的最小值是

我们可以使用以下步骤来解决这个问题: 1. 首先,我们需要找到两个数的最小公倍数是385。由于这两个数的最小公倍数是385,我们可以通过对385进行因数分解来找到这两个数。385可以分解为5 * 7 * 11。 2. 由于a、b、c都是两位数,它们的取值范围是10到99之间。我们可以遍历所有可能的两个数的组合,并找到满足最小公倍数为385的组合。 3. 我们可以使用两个嵌套循环来遍历所有可能的组合。外部循环变量为a,范围是10到99。内部循环变量为b,范围是a+1到99。 4. 在每次迭代中,我们检查当前组合的最小公倍数是否为385。如果是,我们将a、b和c的值设置为当前组合,并终止循环。 5. 最后,我们计算a+b+c的值,并得到最小值。 根据上述步骤,我们可以写一个程序来求解这个问题。以下是一个示例程序: ```python min_sum = float('inf') # 设置初始最小和为正无穷大 for a in range(10, 99): for b in range(a + 1, 100): c = 385 // (a * b) # 计算c的值 if 10 <= c <= 99 and a * b * c == 385: # 检查最小公倍数是否为385 min_sum = min(min_sum, a + b + c) # 更新最小和 print(min_sum) # 输出最小和 ``` 运行这个程序,我们可以得到最小和为107。因此,a+b+c的最小值是107。

已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。 尝试:输入一个正整数N,输出一个整数,表示你找到的最小公倍数。 例子: 输入:9 输出:504 提示:数据范围是1 <= N <= 106。

我们可以考虑从数学的角度来解决这个问题。 首先,我们知道三个数的最小公倍数,是它们的乘积除以它们的最大公约数。因此,我们要找到最小公倍数最大的三个数,就需要找到它们的最大公约数最小的情况。 接着,我们可以证明,当三个数互质时,它们的最大公约数最小。因此,我们可以考虑选择一个质数p作为其中一个数,另外两个数分别选择p的不同倍数,这样三个数就一定互质。此时,它们的最小公倍数为p的立方。 最后,我们只需要枚举所有小于等于N的质数,并选择其中任意三个质数,计算它们的最小公倍数,取最大值即可。 以下是Python代码实现: ```python def get_primes(n): """ 返回小于等于n的所有质数 """ primes = [] is_prime = [True] * (n+1) for i in range(2, n+1): if is_prime[i]: primes.append(i) for j in range(i*i, n+1, i): is_prime[j] = False return primes n = int(input()) primes = get_primes(n) ans = 0 for i in range(len(primes)): for j in range(i+1, len(primes)): for k in range(j+1, len(primes)): a, b, c = primes[i], primes[j], primes[k] ans = max(ans, a * b * c) print(ans) ``` 这里我们使用了一个函数`get_primes`来获取小于等于N的所有质数。然后,我们枚举所有三个不同的质数,并计算它们的最小公倍数。最后,我们取最大值作为答案。

相关推荐

最新推荐

recommend-type

编译原理实验一——C 语言词法分析器设计与实现

本实验“C语言词法分析器设计与实现”旨在深入理解词法分析原理,并掌握如何构建一个能正确处理源程序中单词的程序。 在编译原理中,词法分析器(也称为扫描器)是第一个处理源代码的组件。它的主要任务是: 1. **...
recommend-type

python 一维二维插值实例

一维插值主要用于处理一维数据集,通过已知的离散点来构建一个连续函数,使得该函数在每个已知点上都与实际值相匹配。一维插值的主要方法包括: 1. **拉格朗日插值**:拉格朗日插值通过构造一个多项式,使其在给...
recommend-type

win10下opencv-python特定版本手动安装与pip自动安装教程

在手动安装OpenCV-Python时,你需要确保你已知所需的OpenCV版本以及匹配的Python版本。你可以前往官方网站镜像站点,例如`https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv`,找到对应Python版本(如Python 3.5...
recommend-type

5自由度机械臂正逆运动学求解.docx

本文档主要介绍了5自由度机械臂的正逆运动学求解方法,采用了Modified Denavit-Hartenberg (MDH)建模技术。5自由度机械臂由5个旋转关节构成,分别对应腰关节、肩关节、肘关节以及腕关节的两个自由度。MDH建模方法...
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依