gbdt回归预测python
时间: 2023-09-09 20:12:13 浏览: 119
使用Python进行GBDT回归预测的一般步骤如下:
1. 导入所需的库和数据集:
```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1)
y = data['target']
```
2. 将数据集划分为训练集和测试集:
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 创建GBDT模型并进行训练:
```
model = GradientBoostingRegressor()
model.fit(X_train, y_train)
```
4. 使用模型进行预测:
```
y_pred = model.predict(X_test)
```
5. 对模型进行评估:
```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
```
以上是一个简单的GBDT回归预测的Python示例。请注意,这只是一个基本的流程,具体的实现可能会因数据集和问题而异。
阅读全文