对cnn模型进行随机梯度下降法优化的具体代码
时间: 2024-05-01 20:21:38 浏览: 57
以下是基于PyTorch框架实现的CNN模型进行随机梯度下降法优化的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义CNN模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义随机梯度下降法优化器
net = Net()
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 学习率为0.001,动量为0.9
# 训练模型
for epoch in range(10): # 进行10轮训练
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个batch打印一次损失值
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
其中,`Net`为定义的CNN模型,`nn.CrossEntropyLoss()`为交叉熵损失函数,`optim.SGD()`为随机梯度下降法优化器,`net.parameters()`为需要更新的参数集合,`lr`为学习率,`momentum`为动量。`trainloader`为训练数据集的DataLoader对象,通过遍历DataLoader中的mini-batch进行训练。
阅读全文