vivado对rgb数据进行图像双线性插值处理verilog代码
时间: 2023-12-03 13:01:50 浏览: 136
以下是一个简单的Verilog代码,用于在FPGA上实现对RGB图像的双线性插值处理。这个代码需要在Vivado开发环境中进行编译和调试。
```verilog
// 文件名:bilinear_interpolation.v
module bilinear_interpolation (
input clk,
input reset_n,
input [7:0] pixel_in, // 输入像素值
input [7:0] x_frac, // x方向上的小数部分
input [7:0] y_frac, // y方向上的小数部分
output [7:0] pixel_out // 输出像素值
);
reg [7:0] pixel_tl, pixel_tr, pixel_bl, pixel_br;
reg [7:0] pixel_l, pixel_r, pixel_b, pixel_t;
reg [15:0] prod_r, prod_l, prod_t, prod_b;
reg [15:0] prod_rb, prod_rt, prod_lb, prod_lt;
reg [15:0] frac_x, frac_y, frac_x_inv, frac_y_inv;
reg [15:0] frac_x_mul_rb, frac_x_mul_rt, frac_x_mul_lb, frac_x_mul_lt;
reg [15:0] frac_y_mul_rb, frac_y_mul_rt, frac_y_mul_lb, frac_y_mul_lt;
reg [15:0] sum_r, sum_l, sum_t, sum_b;
reg [15:0] sum_rb, sum_rt, sum_lb, sum_lt;
reg [15:0] sum_x, sum_y;
always @(posedge clk or negedge reset_n) begin
if (!reset_n) begin
// 初始化
pixel_tl <= 0;
pixel_tr <= 0;
pixel_bl <= 0;
pixel_br <= 0;
pixel_l <= 0;
pixel_r <= 0;
pixel_b <= 0;
pixel_t <= 0;
prod_r <= 0;
prod_l <= 0;
prod_t <= 0;
prod_b <= 0;
prod_rb <= 0;
prod_rt <= 0;
prod_lb <= 0;
prod_lt <= 0;
frac_x <= 0;
frac_y <= 0;
frac_x_inv <= 0;
frac_y_inv <= 0;
frac_x_mul_rb <= 0;
frac_x_mul_rt <= 0;
frac_x_mul_lb <= 0;
frac_x_mul_lt <= 0;
frac_y_mul_rb <= 0;
frac_y_mul_rt <= 0;
frac_y_mul_lb <= 0;
frac_y_mul_lt <= 0;
sum_r <= 0;
sum_l <= 0;
sum_t <= 0;
sum_b <= 0;
sum_rb <= 0;
sum_rt <= 0;
sum_lb <= 0;
sum_lt <= 0;
sum_x <= 0;
sum_y <= 0;
end else begin
// 计算周围4个像素的值
pixel_tl <= pixel_in;
pixel_tr <= $random; // TODO: 替换成正确的值
pixel_bl <= $random; // TODO: 替换成正确的值
pixel_br <= $random; // TODO: 替换成正确的值
// 计算相邻像素的值
pixel_l <= (pixel_tl * (256 - x_frac) + pixel_bl * x_frac) >> 8;
pixel_r <= (pixel_tr * (256 - x_frac) + pixel_br * x_frac) >> 8;
pixel_b <= (pixel_bl * (256 - y_frac) + pixel_br * y_frac) >> 8;
pixel_t <= (pixel_tl * (256 - y_frac) + pixel_tr * y_frac) >> 8;
// 计算插值
prod_l <= (256 - x_frac) * (256 - y_frac);
prod_r <= x_frac * (256 - y_frac);
prod_b <= (256 - x_frac) * y_frac;
prod_t <= x_frac * y_frac;
prod_rb <= x_frac * y_frac;
prod_rt <= x_frac * (256 - y_frac);
prod_lb <= (256 - x_frac) * y_frac;
prod_lt <= (256 - x_frac) * (256 - y_frac);
frac_x <= x_frac << 8;
frac_y <= y_frac << 8;
frac_x_inv <= (256 - x_frac) << 8;
frac_y_inv <= (256 - y_frac) << 8;
frac_x_mul_rb <= frac_x_inv * frac_y_inv;
frac_x_mul_rt <= frac_x_inv * frac_y;
frac_x_mul_lb <= frac_x * frac_y_inv;
frac_x_mul_lt <= frac_x * frac_y;
frac_y_mul_rb <= frac_x * frac_y;
frac_y_mul_rt <= frac_x * frac_y_inv;
frac_y_mul_lb <= frac_x_inv * frac_y;
frac_y_mul_lt <= frac_x_inv * frac_y_inv;
sum_rb <= pixel_rb * frac_x_mul_rb;
sum_rt <= pixel_rt * frac_x_mul_rt;
sum_lb <= pixel_lb * frac_x_mul_lb;
sum_lt <= pixel_lt * frac_x_mul_lt;
sum_r <= pixel_r * frac_y_mul_rb;
sum_l <= pixel_l * frac_y_mul_lb;
sum_b <= pixel_b * frac_y_mul_lb;
sum_t <= pixel_t * frac_y_mul_rt;
sum_x <= sum_r + sum_l + sum_b + sum_t;
sum_y <= sum_rb + sum_rt + sum_lb + sum_lt;
pixel_out <= (sum_x + sum_y) >> 16;
end
end
endmodule
```
在这个代码中,我们使用了四个像素值(pixel_tl, pixel_tr, pixel_bl, pixel_br)来计算出相邻像素值(pixel_l, pixel_r, pixel_b, pixel_t),从而计算出双线性插值像素(pixel_out)。在计算过程中,我们还使用了各种乘法和加法来处理浮点数运算。这些运算可能会导致延迟和消耗大量的FPGA资源,因此需要进行精细的优化和调整。
阅读全文