matlab人工智能生成对抗网络代码
时间: 2023-06-11 09:09:14 浏览: 148
MATLAB实现的生成对抗网络SGAN-内含数据集和结果文件.zip
以下是一个简单的生成对抗网络(GAN)的 MATLAB 代码:
```matlab
% 生成器网络
generator = [
imageInputLayer([100 1 1],'Name','in')
fullyConnectedLayer(128*7*7)
reshapeLayer([7 7 128])
transposedConv2dLayer(4,128,'Stride',2,'Cropping',1,'Name','tconv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu1')
transposedConv2dLayer(4,64,'Stride',2,'Cropping',1,'Name','tconv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu2')
transposedConv2dLayer(4,1,'Stride',2,'Cropping',1,'Name','tconv3')
tanhLayer('Name','tanh')];
% 判别器网络
discriminator = [
imageInputLayer([28 28 1],'Name','in')
convolution2dLayer(4,32,'Stride',2,'Padding',1,'Name','conv1')
leakyReluLayer(0.2,'Name','lrelu1')
convolution2dLayer(4,64,'Stride',2,'Padding',1,'Name','conv2')
batchNormalizationLayer('Name','bn2')
leakyReluLayer(0.2,'Name','lrelu2')
fullyConnectedLayer(1,'Name','fc')
sigmoidLayer('Name','sigmoid')];
% GAN 网络
gan = [
generator
discriminator];
% 生成器输入和噪声
genInputSize = 100;
genInput = dlarray(randn(genInputSize,1,'single'),'SSCB');
% 判别器输入和标签
discInputSize = [28 28 1];
discInput = dlarray(zeros([discInputSize 128],'single'),'SSCB');
discLabels = dlarray([ones(128,1,'single'); zeros(128,1,'single')],'CB');
% 优化器选项
learnRate = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
l2RegularizationFactor = 0.0001;
beta1 = 0.5;
beta2 = 0.999;
% 优化器
genOptimizer = adamOpti(learnRate,beta1,beta2,gradientDecayFactor,squaredGradientDecayFactor,l2RegularizationFactor);
discOptimizer = adamOpti(learnRate,beta1,beta2,gradientDecayFactor,squaredGradientDecayFactor,l2RegularizationFactor);
% 训练循环
numEpochs = 50;
miniBatchSize = 128;
numIterations = floor(numel(trainX)/miniBatchSize);
ZValidation = dlarray(randn(genInputSize,1,1,miniBatchSize,'single'),'SSCB');
generatorValidation = dlfeval(@predict,generator,ZValidation);
for epoch = 1:numEpochs
tic
shuffle = randperm(numel(trainX));
trainX = trainX(shuffle);
for i = 1:numIterations
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
XBatch = trainX(idx);
% 更新判别器
dLoss = dlfeval(@discriminatorLoss,generator,discriminator,XBatch,discInput,discLabels);
[discriminator, discLoss] = dlfeval(@adamUpdate, discriminator, discOptimizer, dLoss);
% 更新生成器
gLoss = dlfeval(@generatorLoss,generator,discriminator,genInput,discLabels);
[generator, genLoss] = dlfeval(@adamUpdate, generator, genOptimizer, gLoss);
end
% 打印损失
disp("Epoch: " + epoch + ", Discriminator Loss: " + discLoss + ", Generator Loss: " + genLoss);
% 验证生成器
generatorValidation = dlfeval(@predict,generator,ZValidation);
figure;
for img = 1:miniBatchSize
subplot(8,16,img);
imshow(generatorValidation(:,:,:,img));
end
toc
end
```
这个代码使用了 MATLAB 的深度学习工具箱中的函数来定义生成器和判别器网络,以及训练和优化 GAN 网络。请注意,这个代码是一个简单的示例,你可能需要根据你的数据集和任务来调整网络结构和超参数。
阅读全文