args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\030.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=3) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show()保存超像素识别结果
时间: 2024-03-14 13:46:02 浏览: 191
可以使用下面的代码来保存超像素识别结果:
```
# create a directory to store the segmented images
if not os.path.exists("segmented_images"):
os.makedirs("segmented_images")
# save the image with superpixel boundaries
plt.imsave(os.path.join("segmented_images", "superpixel_boundaries.png"), mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments))
# loop over the unique segment values
for (i, segVal) in enumerate(np.unique(segments)):
# construct a mask for the segment
mask = np.zeros(image.shape[:2], dtype="uint8")
mask[segments == segVal] = 255
# apply the mask to the image
masked_image = np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# save the masked image as a file
filename = os.path.join("segmented_images", "segment_%d.png" % i)
cv2.imwrite(filename, masked_image)
```
这将在当前目录下创建一个名为 "segmented_images" 的文件夹,并将超像素边界图像和每个超像素块保存为单独的图像文件。
阅读全文